Alternative Fuels Data Center Fuel Properties Comparison | | Gasoline/E10 | Low Sulfur
Diesel | Biodiesel | Propane (LPG) | Compressed
Natural Gas
(CNG) | Liquefied
Natural Gas
(LNG) | Ethanol/E100 | Methanol | Hydrogen | Electricity | |--|--|--|---|--|--|---|---|---|--|--| | Chemical
Structure [1] | C ₄ to C ₁₂ and
Ethanol ≤ to
10% | C ₈ to C ₂₅ | Methyl esters of C ₁₂ to C ₂₂ fatty acids | C ₃ H ₈ (majority)
and C ₄ H ₁₀
(minority) | CH ₄ (majority),
C ₂ H ₆ and inert
gases | CH ₄ same as CNG with inert gasses <0.5% (a) | CH₃CH₂OH | СН₃ОН | H ₂ | N/A | | Fuel Material
(feedstocks) | Crude Oil | Crude Oil | Fats and oils from
sources such as
soybeans, waste
cooking oil, animal
fats, and rapeseed | A by-product of
petroleum
refining or
natural gas
processing | Underground
reserves and
renewable
biogas | Underground
reserves and
renewable
biogas | Corn, grains, or
agricultural waste
(cellulose) | Natural gas, coal,
or woody biomass | Natural gas,
methanol, and
electrolysis of
water | Natural gas, coal,
nuclear, wind,
hydro, solar, and
small percentages
of geothermal and
biomass | | Gasoline or
Diesel Gallon
Equivalent
(GGE or DGE) | 1 gal = 1.00
GGE
1 gal = 0.88
DGE | 1 gal = 1.12
GGE
1 gal = 1.00
DGE | B100
1 gal = 1.05 GGE
1 gal = 0.93 DGE
B20
1 gal = 1.11 GGE
1 gal = 0.99 DGE | 1 gal = 0.74 GGE
1 gal = 0.66 DGE | 1 lb. = 0.18 GGE
1 lb. = 0.16 DGE | 1 lb. = 0.19 GGE
1 lb. = 0.17 DGE | 1 gal = 0.67 GGE
1 gal = 0.59 DGE | 1 gal = 0.50 GGE
1 gal = 0.45 DGE | 1 lb. = 0.45
GGE
1 lb. = 0.40
DGE
1 kg = 1 GGE
1 kg = 0.9 DGE | 1 kWh = 0.030
GGE
1 kWh = 0.027
DGE | | Energy
Comparison [2] | 1 gallon of
gasoline has
97%–100% of
the energy in 1
GGE. Standard
fuel is 90%
gasoline, 10%
ethanol. | 1 gallon of
diesel has
113% of the
energy in 1
GGE due to the
higher energy
density of
diesel fuel. | 1 gallon of B100
has 93% of the
energy in 1 DGE,
and 1 gallon of B20
has 99% of the
energy in 1 DGE
due to a lower
energy density in
biodiesel. | 1 gallon of
propane has
73% of the
energy in 1 GGE
due to the lower
energy density
of propane. | 5.66 lb., or
123.57 ft³, of
CNG has the
same energy as
1 GGE, and
6.37 lb., or
139.30 ft³, of
CNG has the
same energy as
1 DGE. [3][4](b) | 5.37 lb. of LNG
has the same
energy as 1 GGE,
and 6.06 lb. of
LNG has the
same energy as
1 DGE. (a) | 1 gallon of E85 contains 73%—83% of the energy in 1 GGE. 1 gallon of E100 has 67% of the energy in 1 GGE. Ethanol is blended with blendstock for oxygenate blending (gasoline component). [5] | 1 gallon of methanol contains 50% of the energy as 1 GGE. | 2.2 lbs. (1 kg)
of H ₂ has the
same energy as
1 GGE. | A typical battery that is the same size as a gallon of gas (0.134 ft³), when used for transportation, can store 15.3% of the energy in 1 GGE. [6][7] | | Energy Content
(lower heating
value) | 112,114-
116,090
Btu/gal (c) | 128,488
Btu/gal (c) | B100
119,550 Btu/gal
B20
126,700 Btu/gal (c) | 84,250 Btu/gal
(c) | 20,160 Btu/lb
[3](b) | 21,240 Btu/lb (a) | 76,330 Btu/gal for
E100 (c) | 57,250 Btu/gal (c) | 51,585 Btu/lb
(c)
33.3 kWh/kg | 3,414 Btu/kWh | | Energy Content
(higher heating
value) | 120,388-
124,340
Btu/gal (c) | 138,490
Btu/gal (c) | 127,960 Btu/gal for
B100 (c) | 91,420 Btu/gal
(c) | 22,453 Btu/lb
[1](c) | 23,726 Btu/lb (c) | 84,530 Btu/gal for
E100 (c) | 65,200 Btu/gal (c) | 61,013 Btu/lb
(c) | 3,414 Btu/kWh | # Alternative Fuels Data Center Fuel Properties Comparison | | Gasoline/E10 | Low Sulfur
Diesel | Biodiesel | Propane (LPG) | Compressed
Natural Gas
(CNG) | Liquefied
Natural Gas
(LNG) | Ethanol/E100 | Methanol | Hydrogen | Electricity | |-----------------------------|--|--|--|---|--|--|---|--|--|---| | Physical State | Liquid | Liquid | Liquid | Pressurized
liquid (heavier
than air as a gas) | Compressed gas
(lighter than air) | Cryogenic liquid
(lighter than air
as a gas) | Liquid | Liquid | Compressed
gas (lighter
than air) or
liquid | Electricity | | Cetane Number | N/A | 40–55 (d) | 48-65 (d) | N/A | N/A | N/A | 0–54 (e) | N/A | N/A | N/A | | Pump Octane
Number | 84–93 (f) | N/A | N/A | 105 (g) | 120+ (h) | 120+ (h) | 110 (i) | 112 (i) | 130+ (g) | N/A | | Flash Point | -45°F (j) | 165°F (j) | 212° to 338°F (d) | -100° to -150°F
(j) | -300°F (j) | -306°F (k) | 55°F (j) | 52°F (j) | N/A | N/A | | Autoignition
Temperature | 495°F (j) | ~600°F (j) | ~300°F (d) | 850° to 950°F (j) | 1,004°F (j) | 1,004°F (k) | 793°F (j) | 897°F (j) | 1,050° to
1,080°F (j) | N/A | | Maintenance
Issues | | | Lubricity is improved over that of conventional low sulfur diesel fuel. For more maintenance information see, the Biodiesel Handling and Use Guidelines—Fifth Edition. (d) | | High-pressure
tanks require
periodic
inspection and
certification. | LNG is stored in cryogenic tanks with a specific hold time before the pressure build is relieved. The vehicle should be operated on a schedule to maintain a lower pressure in the tank. | Special lubricants
may be required.
Practices are very
similar, if not
identical, to those
for conventionally
fueled
operations. | Special lubricants must be used as directed by the supplier as well as M85-compatible replacement parts. Can cause serious damage to organs in the body if a person swallows it, breathes it in, or gets it on their skin. | When hydrogen is used in fuel cell applications, maintenance should be very minimal. High- pressure tanks require periodic inspection and certification. | | | Energy Security
Impacts | Manufactured using oil. Transportation accounts for approximately 30% of total U.S. energy needs and 70% of petroleum consumption. (I) | Manufactured using oil. Transportation accounts for approximately 30% of total U.S. energy needs and 70% of petroleum consumption. (I) | Biodiesel is
domestically
produced,
renewable, and
reduces petroleum
use 95%
throughout its
lifecycle. (m) | Approximately
half of U.S. LPG
is derived from
oil, but no oil is
imported
specifically for
LPG production. | CNG is
domestically
produced from
natural gas and
renewable
biogas. The
United States
has vast natural
gas reserves. | LNG is
domestically
produced from
natural gas and
renewable
biogas. The
United States has
vast natural gas
reserves. | Ethanol is
produced
domestically. E85
reduces lifecycle
petroleum use by
70%, and E10
reduces
petroleum use by
6.3%. (n) | Methanol is
domestically
produced,
sometimes from
renewable
resources. | Hydrogen is produced domestically and can be produced from renewable sources. | Electricity is produced domestically from a wide range of sources, including through coal-fired power plants and renewable sources, making it a versatile fuel. | ### Alternative Fuels Data Center Fuel Properties Comparison ### Notes - [1] Standard chemical formulas represent idealized fuels. Some table values are expressed in ranges to represent typical fuel variations that are encountered in the field. - [2] GGE table values reflect Btu range for common gasoline baseline references (E0, E10, and indolene certification fuel). - [3] The type of meter or dispensing equipment being used to fuel vehicles must be taken into consideration. For fast-fill stations that dispense CNG with Coriolis flow meters, which measure fuel mass and report fuel dispensed on a "gallon of gasoline-equivalent" (GGE) basis, the lbs./GGE factor should be used. For time-fill stations or other applications that use traditional residential and commercial gas meters that measure/register in units of cubic feet, the CF/GGE factor should be used. - [4] See Compressed Natural Gas in Gasoline and Diesel Gallon Equivalency Methodology at http://afdc.energy.gov/fuels/equivalency_methodology.html. - [5] E85 is a high-level gasoline-ethanol blend containing 51% to 83% ethanol, depending on geography and season. Ethanol content is lower in the winter months in cold climates to ensure a vehicle starts. Based on composition, E85's lower heating value varies from 83,950 to 95,450 Btu/gal. - [6] Lithium-ion battery density of 400 Wh/l from Linden and Reddy, Handbook of Batteries, 3rd ed., McGraw-Hill, New York, 2002. - [7] Lithium-ion energy densities increased by a factor of 3.4, when used for transportation, to account for the increased efficiencies of electric vehicle drivetrains relative to the internal combustion engine. #### Sources - (a) NIST Handbook 44 Mass Flow Meters Appendix E https://www.nist.gov/file/323701 - (b) Report of the 78th National Conference on Weights and Measures. 1993. NIST Special Publication 854, pp 322–326. https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication854.pdf - (c) Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model. 2019. Input Fuel Specifications. Argonne National Laboratory. Chicago, IL. https://greet.es.anl.gov/ - (d) T. Alleman, R.L. McCormick, E.D. Christensen, G. Fioroni, K. Moriarty, and J. Yanowitz. 2016. Biodiesel Handling and Use Guidelines—Fifth Edition, National Renewable Energy Laboratory (NREL). https://afdc.energy.gov/files/u/publication/biodiesel handling use guide.pdf - (e) American Petroleum Institute (API). 2011. Alcohols and Ethers. Publication No. 4261, 3rd ed. (Washington, DC, June 2001), Table 2. - (f) Petroleum Product Surveys: Motor Gasoline. Summer 1986. Winter 1986/1987. National Institute for Petroleum and Energy Research. - (g) American Petroleum Institute (API). 2001. Alcohols and Ethers. Publication No. 4261, 3rd ed. (Washington, DC, June 2001), Table B-1. - (h) K. Owen and T. Coley. 1995. Automotive Fuels Reference Book: Second Edition. Society of Automotive Engineers, Inc. Warrendale, PA. https://www.osti.gov/biblio/160564-automotive-fuels-reference-book-second-edition - (i) J. Heywood. 1988. Internal Combustion Engine Fundamentals. McGraw-Hill Inc. New York. - (j) Methanol Institute. Fuel Properties. Accessed 11/14/2012 at https://methanolfuels.org/about-methanol/physical-properties/ - (k) M. Foss. 2012. LNG Safety and Security. Bureau of Economic Geology, Jackson School of Geosciences. University of Texas at Austin. - (I) Energy Information Administration. "Use of Energy Explained: Energy use for transportation." https://www.eia.gov/energyexplained/use-of-energy/transportation.php - (m) J. Sheehan, V. Camobreco, J. Duffield, M. Graboski, and H. Shapouri. 1998. An Overview of Biodiesel and Petroleum Diesel Life Cycles. NREL and the U.S. Department of Energy (DOE). NREL/TP-580-24772. https://www.nrel.gov/docs/legosti/fy98/24772.pdf - (n) M. Wang. 2005. Energy and Greenhouse Gas Emissions Impacts of Fuel Ethanol. Presentation to the NGCA Renewable Fuels Forum, August 23, 2005. Argonne National Laboratory. Chicago, IL. https://www.researchgate.net/publication/228787542 Energy and greenhouse gas emissions impacts of fuel ethanol