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Abstract
Transit bus passenger loading changes significantly over the course of a workday. Therefore, time-varying vehicle mass as a
result of passenger load becomes an important factor in instantaneous energy consumption. Battery-powered electric transit
buses have restricted range and longer ‘‘fueling’’ time compared with conventional diesel-powered buses; thus, it is critical to
know how much energy they require. Our previous work has shown that instantaneous transit bus mass can be obtained by
measuring the pressure in the vehicle’s airbag suspension system. This paper leverages this novel technique to determine the
impact of time-varying mass on energy consumption. Sixty-five days of velocity and mass data were collected from in-use
transit buses operating on routes in the Twin Cities, MN metropolitan area. The simulation tool Future Automotive Systems
Technology Simulator was modified to allow both velocity and mass as time-dependent inputs. This tool was then used to
model an electrified and conventional bus on the same routes and determine the energy use of each bus. Results showed that
the kinetic intensity varied from 0.27 to 4.69 mi21 and passenger loading ranged from 2 to 21 passengers. Simulation results
showed that energy consumption for both buses increased with increasing vehicle mass. The simulation also indicated that
passenger loading has a greater impact on energy consumption for conventional buses than for electric buses owing to the
electric bus’s ability to recapture energy. This work shows that measuring and analyzing real-time passenger loading is advan-
tageous for determining the energy used by electric and conventional diesel buses.

Fuel cost is the second largest expense for transit bus
operators following driver salary. According to data
from 2006, fuel costs contributed to 45% of the total ser-
vice costs for conventional diesel-powered buses (1). The
same source showed that there were 976,000 in-service
buses in 2016, 259% more than in 1960. At an assumed
fuel economy of 7.3mpg, 2.226 billion gallons of total
fuel was consumed that year, equating to an average of
228 gal per vehicle (2).

High yearly fuel consumption has motivated the
implementation of hybrid-electric systems over the past
two decades. According to American Public
Transportation Association statistics, 16.9% of public
transit buses were hybrid-electric, using a diesel engine
combined with an electric traction motor and battery to
reclaim energy through regenerative braking. The share
of hybrid-electric buses increased from 1% in 2005 to
nearly 17% in 2015. Efficiency gains from hybridizing
are not without costs; they require transit authorities to
maintain both electric and conventional vehicle compo-
nents including batteries and diesel engines with

associated after treatment hardware. Hardware and
maintenance costs reduce the lifetime financial benefit of
hybrid vehicles (3).

The high operating costs of hybrid-electric buses and
improved battery economics have motivated a switch to
full electrification of transit fleets. Simultaneously, fore-
casted increases in transit use are expected to result in a
growth of the global market for battery electric transit
buses from nearly 119,000 buses in 2016 to over 181,000
in 2026 (4). Implementing fully electrified buses on arter-
ial routes enhances mobility while significantly improv-
ing energy productivity and reducing emissions.

Many in-use factors influence the energy consumption
of transit buses, whether that energy is consumed as a
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liquid fuel in conventional diesel buses (CDBs) or an
electrical charge in battery electric buses (BEBs). Such
factors include air conditioning use (5), auxiliary diesel
heating (5), driver behavior (6), route type (7), traffic (7),
and passenger mass. Zhang et al. showed that average
bus fuel consumption increased from 19% to 33% when
average speed decreased from 25 to 15 km/h in transit
buses (8). They found that fuel consumption associated
with air conditioning systems was considerable, increas-
ing fuel use by 23% when the system was on. They also
showed that hybrid buses could reduce fuel consumption
between 18% and 29% for the same distance compared
with CDBs. The impacts of speed and air conditioning
systems were much greater in hybrids, with a 50%
increase of fuel usage for average speed decreasing from
25 to 15km/h and a 48% increase for operating air con-
ditioning systems. Most of the aforementioned factors
have been extensively studied, with the exception of pas-
senger mass. Some have studied the influence of mass on
light-duty vehicles with different powertrain configura-
tions (9), but few have studied its impact on transit bus
energy use. Estimating the mass of commercial vehicles
is difficult because they operate over a wide range of
vehicle weight. Transit buses are an exceptional case as
mass varies constantly as a result of passengers boarding
and alighting.

The vehicle power equation (Equation 1) illustrates
the impact of vehicle mass on power consumption. In
Equation 1, P is the power required, m is the total vehicle
mass, a is the acceleration of the vehicle, v is the vehicle
speed, crr is the vehicle coefficient of rolling resistance, g

is the gravitational acceleration, u is the road gradient
angle, cd is the drag coefficient of the vehicle, A is vehicle
equivalent cross-sectional area, and r is air density. The
first term is the acceleration term; the second accounts
for rolling resistance; the third represents air drag; the
fourth is road grade; and the final is for regenerative
braking. Of those, the power required for acceleration,
rolling resistance and road grade all increase linearly
with the mass of the vehicle.

P=mav+ crrmgvcosu+
1

2
cdArv3 +mgvsinu ð1Þ

Although it is known that transit bus mass, and there-
fore energy consumption through Equation 1, changes
constantly during a route because of passenger boarding
and alighting, most previous modeling work has consid-
ered it to be constant. Few studies have considered time-
varying passenger load in bus energy consumption. In
the most pertinent work, Yu et al. used second-by-second
vehicle data and recorded passenger number to deter-
mine CDB mass using 50 kg as the average passenger
weight (10). Passenger load, vehicle speed, and accelera-
tion were divided into different segments, and bus fuel

consumption was calculated under those intervals. They
found that the impact of passenger load on fuel con-
sumption rates became significant when the buses tra-
veled at speeds over 30 km/h or accelerated faster than
0.1m/s2. No clear trends were shown illustrating that the
passenger load had any influence on the distance-specific
fuel consumption for low or high-speed periods; how-
ever, the per-passenger fuel consumption decreased with
increasing passenger load.

A shortcoming of previous research is that most use
average speed rather than instantaneous speed when cal-
culating fuel consumption. Fuel consumption using aver-
age speed is less insightful because it does not capture
high or low speed extremes on a route and is insensitive
to acceleration rate. Furthermore, most fuel consumption
research related to vehicle mass has been conducted in
large Chinese cities, such as Beijing and Hong Kong (8,
11, 12). On account of the unusual driving conditions in
the urban areas of those cities, results may not be appli-
cable to less congested U.S. or European cities where
vehicles accelerate and decelerate less frequently.

In this paper, we apply a novel bus mass detection
technique to determine the impact of time-varying mass
on bus energy consumption. Unlike previous studies that
use a constant mass or estimate varying mass using aver-
age passenger weight, vehicle mass and speed were
directly measured from in-use transit buses. The infor-
mation was then used as input for a vehicle model to
estimate the energy use of simulated BEBs and CDBs.
One valuable use of the analysis presented here is to pre-
dict how BEB range is affected by mass changes resulting
from realistic passenger loading. More closely examining
the effects of varying mass on fuel consumption can help
public transportation companies plan more efficient
routes and timetables. The method described in this
paper could be adapted to compute the fuel refill quan-
tity in CDBs or recharging time in BEBs that use on-
route fast charging. Further, understanding long-term
route mass-estimates could inform future infrastructure
such as in-ground wireless charging placement or distrib-
uted high draw energy storage.

Experimental Methods and Data Processing

Data Collection and Experimental Design

Most transit buses today are manufactured with air ride
suspension systems to maintain the ride height and
adjust suspension spring rate of buses with varying load,
thereby improving passenger comfort and convenience.
A mechanical auto-leveling valve is used to maintain ride
height and increase or decrease spring rate by adjusting
the air pressure inside the bag. The airbag pressure will
increase when a passenger boards the bus and will
decrease as the passenger alights.
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Standard 40-ft buses, the subject of this research, have
three air circuits with two connected airbags on each cir-
cuit. The three circuits are the curbside circuit referring
to the rear right side or passenger pickup side of the vehi-
cle; the street-side circuit referring to the rear driver’s
side; and the front circuit, which encompasses both the
front driver’s and passenger pickup side of the bus. Our,
previous research showed that the mass of a bus is pro-
portional to the combined pressure in the airbags.
Equation 2 shows the estimated mass of the bus, mbus,
where PFront, PCurb, PStreet are the pressures measured in
each airbag respectively, and bFront, bCurb, bStreet, K are
the constants used to correlate the interaction between
the different air circuits.

mbus = bFront
�PFront + bCurb

�PCurb + bStreet
�PStreet +K

ð2Þ

Simplifying this expression, we assume that K = 0 and
bFront = bCurb = bStreet, which gives Equation 3.

mbus = b�(PFront +PCurb +PStreet) ð3Þ

To verify our approach, we used a manually counted
passenger number and an average passenger mass of
76 kg to calculate the actual mass (13). Since the fuel
weight of a CDB is relatively small compared with the
weight of the bus (\0.5%), it is reasonable to incorpo-
rate it into the curb weight of the vehicle. The results of
the mass comparison are shown in Figure 1 in which we
find that the difference in actual mass and mass calcu-
lated by airbag pressures is small. The maximum differ-
ence is 649 kg, which is 5.0% of the curb weight;
however, the average difference is closer to 373kg result-
ing in an error of 2.9%.

Data for the study were collected from three buses
operated by Metro Transit, the primary public transit
provider for the Minneapolis/St. Paul Twin Cities area in

the state of Minnesota. The 40-ft Gillig low-floor buses
had pressure transducers obtained from Honeywell or
Omega Engineering installed in each air suspension cir-
cuit. These transducers converted the pressure in each
airbag to an analog electrical signal that was then digi-
tized via an ADS1115-based Adafruit Analog-to-Digital
converter and stored locally on a Raspberry Pi 3 with an
SD-card. Vehicle speed information was obtained from
the J1939 CAN signals, which were interpreted by an
MCP2515-based SK Pang’s PiCAN2 connected to the
Raspberry Pi using the socket-can protocol. With vehicle
mass information needed only during stop events to cal-
culate passenger load, data was collected at 1Hz when
the bus was in motion. At lower speeds (\3 km/h) higher
resolution data necessitated an increased frequency of
30Hz for data collection. The raw data files included the
time of collection, the raw values converted from the
analog electrical signal and the speed of the bus. The
Raspberry Pi was also equipped with a 3G wireless
modem to remotely access and transfer data wirelessly
when needed. Additionally, offline data retrieval was also
available through easily accessible USB and Ethernet
ports that are standard on the Raspberry Pi.

To estimate bus mass, the air suspension pressures
were first added using Equation 3, which translates the
sum of the pressures into mass. Next, the calibration fac-
tor, b in Equation 3 was found by taking the curb weight
divided by the average airbag pressure when the bus was
empty. After identifying the calibration factor, speed
data were used to determine when the vehicle was at a
stop and thus when the vehicle mass could change. If
speed changed from some positive value to zero, and the
zero-speed condition lasted for more than 3 s, a stop was
detected. At each stop event, pressure data was recorded
for the last 3 s of the stop, filtered and then averaged to
determine the pressure value inputs of Equation 3. The
average of the filtered mass data for each stop was used
as the mass until the next stop. Data for this study were
collected between November 2017 and June 2018 from
three buses resulting in a total of 65 vehicle-days with
vehicle route changing daily.

Drivetrain Modeling

Several different models for vehicle fuel consumption
exist, but most of these require detailed data and experts
with enough knowledge to run them (14). Future
Automotive Systems Technology Simulator (FASTSim)
is a model developed by the National Renewable Energy
Laboratory that requires only limited data as input but
provides suitable accuracy for a study of daily energy
consumption (15). The FASTSim model was modified
from a power-based calculation to a speed-/torque-based
calculation to add fidelity for commercial vehicles that

Figure 1. Actual total mass and calculated mass versus time
during a route. Calculated mass assumed an average passenger
mass of 76 kg.
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frequently encounter situations in which they are power
limited, like when climbing steep hills under heavy loads.
Models were constructed to estimate BEB and CDB
energy consumption from the collected in-use mass and
speed data.

FASTSim is a backward-looking model, meaning that
with knowledge of the vehicle state, it calculates the
power required to achieve that state. Inputs to the model
are vehicle speed, road grade, and the data sampling
increment (time step). This variant of the model is com-
prised of numerous sub-models, each approximating a
component in the physical vehicle. Each model compo-
nent has a front and back location. If two components
are connected, then the back of one component is equiv-
alent to the front of the other. For example, torque, t, is
transferred from the differential to the wheel, therefore,
these components are adjacent, and the model recognizes
the equality shown in Equation 4.

tb, wheel = tf , differential ð4Þ

Individual component models take a backward step to
calculate values at the back of the component from val-
ues at the front of the component. For example, the
backward step to calculate wheel torque is shown in
Equation 5.

tb =Ff rtire ð5Þ

Each component takes a backward step in the series with
the model using logged data to work backward to the
battery in the case of a BEB. Equation 6 shows the series
of this model transition.

Battery Motor Transmission Differential 
Wheel Chassis LoggedData ð6Þ

Once all components have completed a backward step,
they take a forward step to confirm that each component
was able to provide adequate power to meet the drive
cycle. The progression of this forward step is illustrated
in Equation 7 for a BEB.

Battery!Motor! Transmission! Differential!
Wheel! Chassis!ModelOutput ð7Þ

If the available power from the drivetrain is less than the
power required to meet the drive cycle trace, the forward
step of the solver will estimate the speed that the vehicle
was able to reach with reduced power.

Backward Step. Beginning with the road load equation
calculated from logged speed and road grade, the chassis
component calculates the road load using Equation 8
(derived from Equation 1) where v̂ is the logged vehicle

speed, and v is the modeled vehicle speed from the previ-
ous time step.

Froad =
m v̂� vð Þ

Dt
+mgsin uð Þ+ 1

2
rCdAv̂v+mgCrrcos uð Þ

ð8Þ

The road load force (Equation 8), equivalent to the force
required at the front of the tire (Equation 9), and half-
step vehicle speed (Equation 10) are given as inputs to
the wheel component, adhering to the rule that the back
location of the chassis is equivalent to the front location
of the wheel.

Ff =Froad ð9Þ

vf =
1

2
v̂+ vð Þ ð10Þ

The wheel model converts linear speed and force to angu-
lar speed (Equation 11) and torque (Equation 12) with
knowledge of the wheel radius.

vb =
vf

rtire
ð11Þ

tb =Ff rtire ð12Þ

Components with gears will modify the speed and torque
using Equations 13 and 14 respectively and knowledge of
the gear ratio.

vb =vf rgear ð13Þ

tb =
tf

rgear
ð14Þ

The transmission component uses internal logic to shift
gears, whereas the differential has a fixed gear ratio. The
motor and engine components use two-dimensional
interpolation to reference efficiency from a map using
Equation 15.

Pb = tf vf h tf ,vf

� ��sign tfð Þ ð15Þ

Finally, battery and fuel tank models integrate the
required power to track remaining energy using
Equations 16 and 17.

Pbatt =Pb, motor ð16Þ
Ebatt =Ebatt � PbattDt ð17Þ

The Forward Step. Each component has limitations such
as maximum torque, speed, or power. In cases in which
these limits are exceeded, torque or force will be reduced.
For example, if the motor exceeds its maximum speed, its
torque output falls to zero, and zero power is demanded
from the battery. If the motor exceeds its maximum
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torque, its torque output is reset to the maximum avail-
able torque. Additionally, the energy storage component
may exhaust its energy, meaning that no power can be
supplied to the motor, and the motor cannot supply tor-
que to the other components. To propagate component
limitations through the drivetrain, each component takes
a forward step to check that the component behind it
was able to meet the demands of the drive cycle. This
process starts with the engine or motor models verifying
that energy is available from the energy storage system
and adjusting output torque to reflect any reduction in
power output. These steps are shown in Equations 18
and 19.

Pb, motor =Pbatt ð18Þ

tf =
Pb

vf

hsign Pbð Þ ð19Þ

Next, the information is propagated to the transmission
and differential (Equations 20 and 21) followed by the
wheel (Equations 22 and 23).

tb, transmission = tf , motor ð20Þ

tf = tbrgear ð21Þ

tb, wheel = tf , differential ð22Þ

Ff =
tb

rtire
ð23Þ

Finally, the vehicle speed is recalculated in the chassis
model shown in Equation 24.

v=
Ff , wheel +

vm
Dt
� Crrmgcos uð Þ �mgsin uð Þ
m
Dt

+ 1
2

rCdAv
ð24Þ

In the event that every component was able to supply
the contribution demanded of it, the speed calculated
at the end of the forward step will be equal to the
logged speed. If not, the speed will be less than the
logged speed. For scenarios in which the battery is
unable to supply power, Pbatt = 0, the forward step
will propagate this information through the drivetrain
until Ff , wheel, the force provided by the drivetrain, is 0,
reducing Equations 24 to 25, which simulates a coast
down.

v=
vm
Dt
� Crrmgcos uð Þ �mgsin uð Þ

m
Dt

+ 1
2

rCdAv
ð25Þ

Results and Discussion

Vehicle mass plays an important role in understanding
vehicle energy consumption for both BEBs and CDBs.
Energy consumption under three different payloads (i.e.,

zero payloads, maximum payload, and time-varying pay-
load) were investigated for both a BEB and CDB. The
zero-payload scenario was modeled at a vehicle mass of
14,322kg, and the max payload scenario was modeled at
a mass of 19,799kg, which is the curb weight and gross
vehicle weight rating respectively of the Proterra E2+
electric bus. Although actual CDBs are generally lighter,
both buses were modeled at the same weights for this
study. The time-varying payload experienced weight var-
iations for passenger loadings between 2 and 21 daily
average passengers. Figure 2 shows the energy consump-
tion per mile versus daily vehicle mass with zero pay-
loads, time-varying payload, and max payload
represented by the green triangles, blue circles, and red
squares, respectively.

The dashed trend line in Figure 2 indicates a positive
correlation between vehicle mass and energy consump-
tion for both kinds of buses, thus confirming that vehicle
mass plays an important role in understanding vehicle
energy consumption regardless of drivetrain type. The
buses use more energy as more passengers board, with a
34% average increase for the max payload CDB over the
empty CDB compared with a 23% average increase for
the max payload BEB over the empty BEB. In relation
to sensitivity to added vehicle mass, the CDB increases
at a rate of 0.63Wh/(mi-kg), whereas the BEB increased
energy consumption at a 0.05Wh/(mi-kg) rate. It should
be noted that the energy consumption of the CDB was
calculated based on the energy content in the fuel con-
sumed assuming 37.6 kWh/gal. The lower sensitivity of
the energy consumption of the BEB as compared to the
CDB can be attributed to the increase in drivetrain effi-
ciency as well as the ability of the BEB to recapture
energy through regenerative braking. With greater mass,
the BEB both expends and recaptures more kinetic
energy, whereas the CDB only uses more energy.
However, this increased regeneration is not guaranteed
as braking is controlled by the operator, and there is a
maximum energy recapture rate of an electric vehicle.
Therefore, the vehicle’s control system and the operator
may benefit from knowing the vehicle mass allowing
them to maximize regenerative braking.

Driving aggressiveness can exacerbate the effect of
increased payload. Kinetic intensity (KI), the ratio of
characteristic acceleration (ã) to aerodynamic velocity
(v2aero), is a metric used to describe the aggressiveness of
drive cycles and is often used to estimate the benefits of
hybridizing or electrifying an existing drivetrain
(Equation 26) (16).

KI =
~a

v2
aero

ffi
PN�1

j= 1 positive
1
2
� v2

j+ 1 � v2
j

� �
+ g � hj+ 1 � hj

� �� �

PN�1
j= 1 v3

j, j+ 1 � Dtj, j+ 1

ð26Þ
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Higher KI indicates a trip with frequent acceleration/
deceleration and slower speeds. Lower KI is evidence of
less frequent starts and stops as well as higher speeds. If
the goal is to improve fuel economy, vehicles with high
KI benefit most from regenerative braking, whereas vehi-
cles with low KI are more conducive to aerodynamic
devices like skirts or fairings. KI only characterizes driv-
ing behavior and does not account for the mass or drag
coefficient of the vehicle. Figure 3 provides a violin plot
of log-scale KI for five common vocations throughout
101 vehicle-days of data. This plot was generated using
data from the National Renewable Energy Laboratory’s
FleetDNA vehicle database. The white dot and black
box for each vocation represent the median and inter-
quartile ranges respectively, and the black lines are the
95% confidence intervals like in a box plot. In addition,
the outer violin shape is generated for each location
based on the kernel density of the data providing an
understanding of where the majority of the vehicles lie.
Transit buses have a relatively high KI compared with

other common vocations indicating that the transit buses
drive cycle may be a good candidate for regenerative
braking and that vehicle mass will have a large effect on
energy consumption.

To test this hypothesis, we compared the increase in
energy consumption a loaded bus would have over the
unloaded bus versus KI for both the CDB and BEB. The
KI of the measured routes varied from 0.27 to 4.69mi21.
Both time-varying payload (blue circles) and max pay-
load (red squares) were compared with no payload, and
the relative increase is shown by percentage in Figure 4.
As expected, energy used relative to an unloaded bus
increases with increasing KI for all cases. Additionally,
the CDB shows a larger increase for higher KIs than that
of the BEB, confirming the benefit from regenerative
braking; that is, with frequent stops/starts and lower
speeds, more energy is recovered by the BEB.

As KI reaches 4mi21, Figure 4 shows the BEB has a
45% increase in energy consumption as compared to a
20% increase for a KI of 0.5mi21 in the case of max
payload. The time-varying payload case only shows a
4% increase in energy consumption for a KI of 0.5mi21

and an 8% increase for a KI of 4mi21. Similarly, the
CDB has about a 100% increase in energy use for the
max payload for a KI of 4 mi21 compared with a 45%
increase for a KI of 0.5 mi21 in the case of max payload.
The time-varying payload case shows a 6% increase in
energy consumption for a KI of 0.5mi21 and a 15%
increase for a KI of 4mi21. This means that for the 38%
increase in vehicle mass between the unloaded and max
payload case, there is an even greater increase in energy
consumption. Moreover, a few instances for the CDB
had a 115% increase in energy consumption, three times
that of the weight increase. The variable payload case
was less affected by increasing KI; however, for both the
BEB and CDB there was a positive correlation between

Figure 2. Energy consumption correlation with bus mass between empty and full payloads.

Figure 3. Daily average KI values by vocation from the
FleetDNA database (n = 700).

6 Transportation Research Record 00(0)



energy consumption and KI. It is possible that other
routes or cities with higher transit utilization would have
passenger payloads closer to that of the max payload
case.

This high sensitivity of energy consumption to vehicle
mass at high KI shows the value of knowing real-time
mass estimation. For instance, if a transit agency is trying
to determine optimal route selection or battery size for
BEBs, knowing the passenger payload would help inform
these decisions by allowing them to properly estimate the
energy use throughout the day. Figure 5 provides a com-
parison of cumulative work versus distance for the BEB
and CDB during one selected day of operation. The red,
blue, and green lines represent max payload, time-
varying payload, and no payload, respectively. Both the
CDB and the BEB show higher work rates as the vehicle

gets heavier. For the example day shown in Figure 5, the
CDB expends a total of 380kWh, 293kWh, and
257kWh for the max payload, time-varying payload,
and no payload cases respectively, and the BEB uses a
total of 156kWh, 121 kWh, and 109kWh respectively.
The difference in total work between no payload and the
max payload case for the CDB was 47.9%, whereas the
difference for the BEB was only 43.1% indicating the
BEB is less sensitive to mass fluctuations than the CDB.
Although most CDBs have enough fuel capacity to cover
this difference in work, a BEB may be limited depending
on the size of the battery, thus limiting the overall driving
range of the vehicle. Additionally, Figure 5 shows that
cumulative work increases at a higher rate for the CDB
compared with the BEB, which is again attributed to the
lack of regenerative braking.

Figure 4. Energy consumption increase with trip KI owing to payload for BEB and CDB.

Figure 5. Single day payload comparison of cumulative tractive work for the BEB and CDB.
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The influence of a vehicle’s mass on its energy con-
sumption can be explained by examining the energy con-
sumption from each component of the road load
equation, shown in Figure 6. For both buses, as mass
increases, the energy used to accelerate the vehicle
increases proportionally along with the rolling resistance
to a lesser extent, though the energy to overcome drag
remains constant. However, as mentioned previously,
vehicle mass has a smaller influence on the energy con-
sumption of the BEB, which can be explained by its abil-
ity to recapture energy through regenerative braking. As
the mass increased on the BEB, the vehicle’s total kinetic
energy increased, meaning there was more energy to
recapture during braking events. Figure 6 confirms this
by showing that while total energy consumption increases
proportionally to vehicle mass, the energy regained from
regenerative braking increases as well. The results agree
with Yu’s study that the impacts of passenger load on
fuel consumption are directly influenced by accelerations
(16).

Conclusion

This research applied a novel mass detection technique
to determine the impact of time-varying mass on bus
energy consumption. Real-world driving data and real-
time vehicle mass-estimates were combined with a drive-
train model to evaluate the impact of vehicle payload on
energy consumption. The results in this paper show that
as the vehicle mass increased, energy consumption for
both the CDB and BEB increased proportionally. The
CDB had a greater sensitivity to increases in vehicle pay-
load over the BEB, which can be explained by the BEB’s
ability to recapture energy through regenerative braking.
Further, the increase in energy consumption from pay-
load was a result of the extra work required to accelerate

the vehicle and, to a lesser extent, to overcome rolling
resistance. Despite this increased impact on CDBs, most
CDBs had enough fuel to account for any increases in
energy consumption such that their ability to perform
their duty was not affected. However, increases in vehicle
payload may limit the driving range of a BEB and affect
its ability to perform the route if the battery is not sized
to consider the range of passenger load. Driving aggres-
siveness as measured by KI was also shown to have a
larger impact on energy consumption at higher KIs with
the CDB showing the greatest sensitivity for a KI of
4mi21 resulting in a 115% increase in energy consump-
tion for the max payload case, and only a 15% increase
for the variable payload. Despite the relatively low
increase for the variable payload case, it is possible that
other routes or cities with higher transit utilization would
have passenger payloads closer to that of the max pay-
load case.

Only 65 days of data and three buses were used in this
study; therefore, further research with a larger vehicle
dataset including more buses and routes with higher utili-
zation is planned to fully investigate potential transit bus
driving scenarios. Future work will also involve analyz-
ing real-world energy efficiency under different payloads
for both in-use BEBs and CDBs to validate the modeled
results reported in this study. Outcomes of these future
studies may include identifying specific routes that will
realize the most savings from electrification by properly
categorizing energy requirements resulting from aggres-
sive driving and passenger payload. Results could also be
used to plan more energy-efficient routes and to schedule
on-route fast charging of BEBs.
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