Costs Associated With Non-Residential Electric Vehicle Supply Equipment

Factors to consider in the implementation of electric vehicle charging stations

November 2015

Prepared by New West Technologies, LLC for the U.S. Department of Energy Vehicle Technologies Office
Acknowledgments

This report was produced with funding from The U.S. Department of Energy’s (DOE) Clean Cities program. DOE’s Clean Cities Co-director Linda Bluestein and Workplace Charging Challenge Coordinator Sarah Olexsak provided direction and overall guidance for this pursuit. This report was made possible by input from national laboratories, utilities, electricians, electric vehicle supply equipment manufacturers, and charging station hosts. The authors are grateful for all the information provided by subject matter experts and would like to extend a special thank you to Jim Francfort, Idaho National Laboratory; Ted Bohn and Dan Santini, Argonne National Laboratory; Charlie Botsford, AeroVironment; and Randy Schimka, San Diego Gas and Electric. The wide variety of the reviews greatly added to the robustness and accuracy of this report, but any errors herein are solely the authors’ responsibilities.

Authors

Margaret Smith, New West Technologies LLC
Jonathan Castellano, New West Technologies LLC
Executive Summary

As more drivers purchase plug-in electric vehicles (PEVs), there is a growing need for a network of electric vehicle supply equipment (EVSE) to provide power to those vehicles. PEV drivers will primarily charge their vehicles using residential EVSE, but there is also a need for non-residential EVSE in workplace, public, and fleet settings. This report provides information about the costs associated with purchasing, installing, and owning non-residential EVSE. Cost information is compiled from various studies around the country, as well as input from EVSE owners, manufacturers, installers, and utilities. The cost of a single port EVSE unit ranges from $300-$1,500 for Level 1, $400-$6,500 for Level 2, and $10,000-$40,000 for DC fast charging. Installation costs vary greatly from site to site with a ballpark cost range of $0-$3,000 for Level 1, $600-$12,700 for Level 2, and $4,000-$51,000 for DC fast charging.

Many factors lead to highly variable costs associated with EVSE. The report includes example cost ranges for both different types and applications of EVSE as well as the cost factors that can influence whether a particular EVSE unit or installation will fall on the lower or higher end of the cost range. Employers, business owners, and fleet operators can find the best EVSE solution for a specific site by evaluating needs and opportunities, then strategically determining the optimal number of EVSE, types of features, and location.

In general, there is an industry consensus that the cost of EVSE units is trending downwards and will continue to decrease. However, installation costs are highly variable and there is no consensus among industry stakeholders about the direction of future installation costs. In addition, state and local incentives in many places encourage EVSE installation through funding and technical assistance.

While the available cost information from past EVSE installations provides a wide ballpark range for future installations, the only way to determine a cost estimate for a specific site is to contact the utility, EVSE manufacturers, and EVSE installers for a site assessment. Clean Cities coalitions around the country bring together a network of contacts in the electric vehicle industry and are a good starting place for identifying local contacts. To find a local Clean Cities coalition, visit cleancities.energy.gov.
# Table of Contents

Introduction ....................................................................................................................................................................................... 6  
EVSE Overview .................................................................................................................................................................................. 6  
EVSE Costs Overview ........................................................................................................................................................................ 7  
EVSE Unit Costs ................................................................................................................................................................................ 9  
   EVSE Unit Cost Drivers ........................................................................................................................................................... 9  
   EVSE Unit Costs Ranges and Examples ............................................................................................................................. 11  
Installation Costs ............................................................................................................................................................................ 13  
   Installation Cost Drivers ......................................................................................................................................................... 13  
   Installation Cost Ranges and Examples ............................................................................................................................ 17  
Operation and Maintenance (O&M) Costs .............................................................................................................................. 20  
   Electricity Consumption Charges ..................................................................................................................................... 20  
   Electricity Demand Charges ............................................................................................................................................... 20  
   Network Fees ............................................................................................................................................................................ 21  
   Maintenance and Repair ........................................................................................................................................................ 21  
   Station Management ............................................................................................................................................................. 22  
Additional Cost Factors ................................................................................................................................................................ 22  
   Incentives .................................................................................................................................................................................. 22  
   Permitting and Inspection ................................................................................................................................................... 24  
Workplace, Public, and Fleet EVSE Costs ............................................................................................................................... 24  
   Cost Factors to Consider for Workplace Charging ....................................................................................................... 25  
   Cost Factors to Consider For Public Charging ............................................................................................................... 26  
   Cost Factors to Consider for Fleet Charging .................................................................................................................. 28  
Summary .......................................................................................................................................................................................... 29  
Tips for Minimizing EVSE Costs ................................................................................................................................................. 29  
Additional Resources ..................................................................................................................................................................... 32  
Appendix A: Acronyms, Definitions, and Equipment Overview ....................................................................................... 33  
Appendix B: Codes and Standards ................................................................................................................................................. 37  
Appendix C: Electricity Consumption Examples ................................................................................................................... 38  
Appendix D: State and Utility EVSE Incentives ....................................................................................................................... 39  
Appendix E: References ............................................................................................................................................................... 42
List of Figures

Figure 1 PEV Charging Pyramid .................................................................................................................................................6
Figure 2 AC Level 1 and Level 2 Charging Schematic ...........................................................................................................6
Figure 3 DC Fast Charging Schematic ......................................................................................................................................6
Figure 4 Charging Level Descriptions ......................................................................................................................................7
Figure 5 Ballpark Cost Ranges for Level 2 EVSE .................................................................................................................12
Figure 6 Average Installation Cost for Publicly Accessible Level 2 EVSE................................................................. 16
Figure 7 Distribution of Per Unit Publicly Accessible Installation Costs ................................................................. 18
Figure 8 Distribution of Per Unit Workplace Level 2 Installation Costs ......................................................................................... 19
Figure 9 Distribution of DCFC Installation Costs ....................................................................................................................... 19
Figure 10 State EVSE Incentives Map .......................................................................................................................................23
Figure 11 Level 2 Average Installation Cost by Setting.......................................................................................................25

List of Tables

Table 1 EVSE Unit Costs .................................................................................................................................................................11
Table 2 Ballpark EVSE Installation Costs .................................................................................................................................17
Table 3 Example EVSE Incentives .............................................................................................................................................23
Table 4 Ballpark EVSE Unit and Installation Costs .............................................................................................................30
Table 5 Connector Standards, Charging Levels, and Vehicles ................................................................................................36
Introduction

This document is designed to help employers, business owners, and fleet operators understand the costs associated with installing, operating, and maintaining electric vehicle supply equipment (EVSE), also known as electric vehicle “charging stations.” It provides an overview of the equipment and processes needed to install EVSE and offers representative examples of cost ranges. The information presented is based on data collected from various studies around the country, as well as input from EVSE owners, manufacturers, installers, and utilities.

Many plug-in electric vehicle (PEV) drivers charge their vehicles at home using residential charging located at single family homes or multi-family complexes such as apartments and condominiums. This report however, focuses on the costs of non-residential stations such as public access, workplace, and fleet stations shown in the middle and top of the pyramid in Figure 1. Increasing the number of EVSE available in these non-residential locations can help expand the electric driving range for PEVs, as well as enable PEV ownership for drivers without access to home charging. Public access charging stations are available for use by the general public or patrons/visitors to businesses, institutions, and municipalities. Workplace charging stations are intended for the use of employees or guests of a particular organization. Fleet stations are primarily used by business, government, or other fleet vehicles and are located at commercial, government, or other non-residential parking locations.

EVSE Overview

EVSE consists of all the equipment needed to deliver electrical energy from an electricity source to a PEV battery. The EVSE communicates with the PEV to ensure that the plug is securely connected to the vehicle receptacle before supplying a safe flow of electricity. There are three primary types of EVSE. Two types—AC Level 1 and AC Level 2—provide alternating current (AC) to the vehicle, which the vehicle’s onboard charging equipment

---

1 This is a companion resource to the Clean Cities’ Plug-In Electric Vehicle Handbook series available at www.cleancities.energy.gov/publications. These handbooks provide information about PEVs, benefits of owning EVSE, and the process for installing EVSE.
converts to the direct current (DC) needed to charge the batteries. Note that for AC Level 1 and 2 the charger built directly into the car is charging the battery. The third type—DC fast charging—provides DC electricity directly to the vehicle’s battery. The charger is located off-board the vehicle, in the DC fast charger (DCFC). The charging schematics in Figures 2 and 3 depict the components involved with charging a PEV.

The differences in supply power and charging time for AC Level 1, AC Level 2, and DC fast charging are illustrated in Figure 4. The supply power is a product of the voltage in volts (V) and current in amperes (A). EVSE units are available in different amperage ratings which correlate to charging power. The vehicle charging time depends on the state of charge of the battery, the power coming from the EVSE, and the rate a vehicle can accept power, which may be lower than the supply power. The EVSE’s dedicated circuit must be rated for a larger current than the EVSE continuous load rating (at least 125% larger) to conform to the National Electrical Code (NEC). For instance, a Level 2 EVSE rated for 30A continuous load will require a 40A circuit. Please refer to Appendix A for more information about EVSE charging types, PEV charging components, electrical hardware, and EVSE connector standards.

<table>
<thead>
<tr>
<th>Charging Level</th>
<th>Vehicle Range Added per Charging Time and Power</th>
<th>Supply Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Level 1</td>
<td>4 mi/hour @ 1.4kW</td>
<td>120VAC/20A (12-16A continuous)</td>
</tr>
<tr>
<td></td>
<td>6 mi/hour @ 1.9kW</td>
<td></td>
</tr>
<tr>
<td>AC Level 2</td>
<td>10 mi/hour @ 3.4kW</td>
<td>208/240VAC/20-100A (16-80A continuous)</td>
</tr>
<tr>
<td></td>
<td>20 mi/hour @ 6.6kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 mi/hour @ 19.2 kW</td>
<td></td>
</tr>
<tr>
<td>DC Fast Charging</td>
<td>24 mi/20minutes @24kW</td>
<td>208/480VAC 3-phase (input current proportional to output power; ~20-400A AC)</td>
</tr>
<tr>
<td></td>
<td>50 mi/20minutes @50kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90 mi/20minutes @90kW</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. Description of charging level supply power and charging times. The power coming from the EVSE depends on the voltage from the electrical service and the EVSE amperage rating.

**EVSE Costs Overview**

The costs associated with installing and operating EVSE can vary widely, depending on the EVSE unit features, site location, available electrical capacity, and labor costs. It is difficult to compare or predict EVSE costs since actual costs of a given project will depend on the specific needs and constraints of the station and its users. The cost ranges shown in this document should only be used for the purposes of preliminary investigation of PEV charging infrastructure and not as a tool for estimating the cost of an individual project. To obtain estimates for a specific project, contact EVSE manufacturers and electricians. The installation costs presented in this report are primarily from early installations of the technology that occurred between 2009

---

2 For more information, consult your local Clean Cities coalition. Contact information can be found at [afdc.energy.gov/cleancities/coalitions/coalition_contacts.php](http://afdc.energy.gov/cleancities/coalitions/coalition_contacts.php)
and 2013 because robust data sets of newer installations are not yet available. As the PEV market develops and matures in the future, installation costs may vary from those presented herein.

This report draws from published studies and interviews with industry experts to provide cost approximations across a range of EVSE types, geographic locations, and complexity. Two recent and robust sources of information are the EV Project and a study by the Electric Power Research Institute (EPRI).

The EV Project, funded by the U.S. Department of Energy (DOE) and private partners, deployed Level 2 and DCFC EVSE from 2011 to 2013. Idaho National Laboratory (INL) has cost data for about 2,500 single port Level 2 EVSE (pictured in Photo 1) and over 100 dual port DCFC installed for non-residential use.

EPRI conducted a study on installation costs for EVSE installed in the 2010 to 2013 timeframe. EPRI analyzed 385 commercial charging sites that installed 989 Level 2 EVSE including both single port and dual port EVSE (EPRI 2013).

The West Coast Electric Highway (WCEH) is another public-private partnership with cost information for DCFC installations. The WCEH installed 56 DCFC stations across Oregon and Washington between 2011 to 2015.

The costs associated with owning and operating EVSE include:

- **EVSE unit hardware cost**, which may include:
  - EVSE unit
  - optional EVSE equipment (e.g., RFID card reader);
- **Installation cost**, which may include:
  - contractor labor and materials for
    - connecting EVSE to the electrical service (e.g., panel work, trenching/boring, and repaving parking)
    - new electrical service or upgrades (e.g., transformers)
    - meeting Americans with Disabilities Act (ADA) requirements
    - traffic protection
    - signage
    - lighting
  - permitting and inspection
  - engineering review and drawings;
- **Additional capital cost**, which may include:
  - hardware extended warranty
  - repair labor warranty
  - land/parking space purchase or lease;
- **Incentive credits** (to reduce equipment or installation costs), which may include:
  - rebates
  - tax credits/exemptions
  - grants
  - loans
• Operation and maintenance cost
  - electricity consumption and demand charges
  - EVSE network subscription to enable additional features
  - management time
  - billing transaction costs
  - preventative and corrective maintenance on EVSE unit
  - repairs (scheduled and unscheduled).

A site owner may also want to consider the upfront costs that are incurred to identify viable locations for an EVSE station. This may include fees for consultants, site evaluations, or feasibility studies needed to assess the electrical capacity and location of utility service lines serving a given facility or site.

**EVSE Unit Costs**

EVSE units are available from many different manufacturers with a variety of designs and features. Features range from a simple unit that turns on and off to units that collect data, communicate to users, and provide a billing option for the owner of the charging station. The type and quantity of EVSE chosen for a site will depend on the intended users, site specific conditions, data management, and business case for the station. When purchasing an EVSE unit, an owner may choose to also purchase an extended warranty to cover potential repairs beyond the standard unit warranty period.

**EVSE Unit Cost Drivers**

EVSE unit costs are affected by the charging level, number of ports, communications system, data analysis, and other features.

**Charging Level and Amperage Rating**

All PEVs have a cordset that plugs into a Level 1 outlet (110-120V) and connects to the vehicle’s charging port with a connector as shown in Photo 3. Providing Level 1 charging is the most inexpensive charging option. It can range from offering an outlet for a PEV driver to plug in a Level 1 cordset to offering an EVSE with a connector. Level 2 units are the midrange cost option and DCFC is the highest cost tier. The EVSE charging power depends on the voltage from the electrical service and the EVSE unit amperage rating. Level 1 EVSE are rated from 12-16A continuous, Level 2 EVSE are commonly rated from 16-48A continuous, and DCFC typically have a maximum of 60-200A. An increase in charging power also increases the cost of the unit due to the higher manufacturing cost to accommodate the higher amperage (e.g., a 48A Level 2 EVSE costs more than a 30A Level 2 EVSE).

**Charging Ports**

Single port EVSE units provide access for only one vehicle to charge at a time. Multiple port EVSE units (commonly 2, 3, or 4 ports) are available to allow multiple vehicles to charge simultaneously or sequentially. DCFC connectors (the part of the EVSE that is inserted into the vehicle inlet) can meet either an SAE standard...
or CHAdeMO standard\textsuperscript{3}. A dual port DCFC may offer multiple EVSE connector standards at one unit, but only allow one vehicle to charge at a time. Careful consideration should be given to these options so that the EVSE is compatible with the PEVs that will be using it as well as potential future estimated usage. Multiple port units are more expensive than single port units but both the unit cost and the installation cost are less expensive on a per-port basis for multiple port units.

**Type of Mounting System**

Units are typically available as either wall mounted (shown in Photo 4) or pedestal mounted (shown in Photo 5). Ceiling mounted units are also available but are more common for residential use. A pedestal mounted unit costs about $500-$700 more than a wall mounted one due to the material and manufacturing cost of the pedestal. There is also an additional construction cost for installing a pedestal mounted unit (e.g., pouring a concrete pad at the base). Typically, site owners choose a wall mounted unit if the parking spots to be used for charging are close to a wall, since the unit and installation cost less than a pedestal mount. However, pedestal mounted units provide more design flexibility, such as the ability to place the EVSE in the middle of a parking lot or in front of a sidewalk. They can also hold multiple EVSE units.

---

**In the EV Project, the average installation cost for a wall mounted Level 2 EVSE unit ($2,035) is 37% lower than the average installation cost for a pedestal unit ($3,209).**

---

**Additional Features**

The most basic EVSE unit will be UL (Underwriters Laboratories) approved to safely supply electricity to the vehicle and provide lights to show when it has started and stopped charging. More sophisticated (“smarter”) units are available with a variety of additional features described below, although these increase the cost of the EVSE unit.

- **Communications capabilities** enable different levels of data communication with the user, site host, utility grid, and the Internet. For instance, a user may be able to use a mobile application to remotely find an EVSE and check if it is available for use or out of service. Also, site hosts may be able to remotely update pricing, push messages out to users, and control other charging parameters.
- **Access control** restricts the use of EVSE to specific users. Systems range from a simple keypad or padlock to more complex, (e.g., granting access through radio-frequency identification (RFID) cards or mobile phone applications.)
- **Point of sale (POS)** functionally allows units to recover costs/fees associated with charging events. They could include a credit card reader, RFID reader, or mobile phone application.

---

\textsuperscript{3} See Appendix A: Acronyms, Definitions, and Equipment Overview for more information about EVSE connectors and standards.
• **Energy monitoring** tracks the EVSE’s energy consumption and provides reports on greenhouse gas emissions reductions. This can help site hosts show how the EVSE is contributing to their sustainability goals.

• **Energy management and demand response** optimizes load management to maximize charging during low rate periods and minimize charging during high-rate periods. For instance, an EVSE can be programmed to only charge a vehicle during predetermined times.

• **Advanced display screen** provides user communication, advertising, and brand promotion.

• **Retractable cord** protects the cord and connector from damage and freezing, as well as reduces the risk of tripping on the cord.

• **Automated diagnostics** are used to troubleshoot issues or malfunctions that occur with the EVSE.

**Networked or Non-Networked**

EVSE units can be networked or non-networked. Networked units are connected to the Internet via a cable or wireless technology and send data to a network host’s computer server, also known as the “back office.” They provide the ability to remotely access availability of EVSE in real-time. Non-networked units are not connected to the Internet. They provide basic charging functionality without advanced communications or monitoring capabilities, so the equipment is priced lower than networked EVSE. Secondary systems can be purchased to incorporate additional features such as access control, payment systems, and data collection into a non-networked unit. These secondary systems can be useful if a grant or incentive requires data collection but the site host wants to purchase a non-networked EVSE.

Networked EVSE are typically part of a charging network, which is a group of EVSE units with access control and payment systems that are managed by a single organization. A sampling of the major networks includes AeroVironment, Blink, ChargePoint, GE WattStation Connect, Greenlots SKY, NRG eVgo, SemaConnect, and Tesla. Each charging network has its own PEV driver payment model, the most common being monthly subscriptions, pay-as-you-go (pay per charge), and free (free to charge; no subscription fee required). Benefits of a site host paying for a charging network can include charging station visibility and availability for drivers, energy monitoring, station usage analysis, automated payments, automated diagnostics, access control, and customer support. A site host may set pricing policies using a networked EVSE (e.g., employees consume electricity for free and visitors pay a fee).

**EVSE Unit Costs Ranges and Examples**

EVSE unit costs have decreased over the past five years as the PEV industry has matured and manufacturers have improved EVSE technology. The EVSE unit costs presented in Table 1 are based on single port products available in 2014 and 2015. EVSE with multiple ports may have a price higher than these ranges.

<table>
<thead>
<tr>
<th>EVSE Type (single port)</th>
<th>EVSE Unit Cost Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>$300-$1,500</td>
</tr>
<tr>
<td>Level 2</td>
<td>$400-$6,500</td>
</tr>
<tr>
<td>DCFC</td>
<td>$10,000-$40,000</td>
</tr>
</tbody>
</table>

Table 1. EVSE unit cost ranges based on units available in 2015
The lowest price Level 1 unit is a simple plug-in cordset costing about $300. A wall mounted cordset with a keypad for access control is at the middle of the cost range. A hardwired Level 1 pedestal unit with access control and cable management could cost closer to $1,500. A pedestal Level 1 EVSE is shown in Photo 6.

Single port Level 2 units are available spanning a $400-$6,500 cost range depending on the included features. While there is no standard EVSE unit for the fleet, workplace, or public sites, the graphic in Figure 5 illustrates example costs for sample Level 2 EVSE units with different tiers of additional features. The pictured examples are meant only to show how the cost of an EVSE unit may change based on the mounting system and selected features.

**Ballpark Cost Ranges for Level 2 EVSE**

<table>
<thead>
<tr>
<th>Fleet</th>
<th>Workplace</th>
<th>Public</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Basic Wall Mount</strong></td>
<td><strong>Basic Pedestal</strong></td>
<td><strong>Pedestal with Low Level Data Collection</strong></td>
</tr>
<tr>
<td>$500-$1,000</td>
<td>$1,200-$1,700</td>
<td>$1,700-$2,700</td>
</tr>
<tr>
<td><strong>Pedestal with Advanced Features</strong></td>
<td></td>
<td>$3,000-$6,000</td>
</tr>
</tbody>
</table>

Figure 5. Ballpark cost ranges for different tiers of Level 2 EVSE units. *Image from Kristina Rivenbark, New West Technologies.*

A low price DCFC costing approximately $10,000 would typically have low power (25-50kW) with low charging amperage, a single port, and no display or networking components. The lower cost for a low power output is a tradeoff for a slower charging speed but it may be a good fit for the vehicles that are expected to use the DCFC. A mid-price DCFC will have higher power (50kW+), single or multiple ports, a keypad or some other simple form of access control, and a simple display. It might also be networked and have POS. The highest price DCFC will have higher power (50kW+) with high charging amperage enabling multiple vehicles to charge at once, RFID or some other advanced access control method, an advanced display, and software enabling energy consumption monitoring and data analysis, in addition to being networked and having POS. A high end single port DCFC could cost up to $40,000.
Installation Costs

Potential EVSE hosts are encouraged to have an electrical contractor complete a site evaluation when budgeting for a specific EVSE installation. An initial site evaluation should include determining the electrical capacity of the site, the location of distribution or service lines, the required electrical capacity for the type and quantity of EVSE units, and the best location for the EVSE unit(s). The best location for the units will take into consideration minimizing the installation costs and ADA accessibility requirements.

During the installation process, a contractor will procure the EVSE unit(s), install a new or upgraded electrical service or connect the EVSE to an existing electrical service that will accommodate the EVSE load, install the EVSE equipment, and re-stripe parking spaces as necessary to fulfill the ADA parking requirements. The local electric utility may need to be involved if the necessary electrical supply upgrades to the facility are considerable (e.g., higher capacity supply wires, transformers, etc.).

Installation Cost Drivers

A simple installation will be at the lower end of the cost range while a more complex installation will move toward the middle or higher end. An installation becomes more complex when it requires one or more of the following:

• Trenching or boring a long distance to lay electrical supply conduit from the transformer to the electrical panel or from the electrical panel to the charging location;
• Modifying or upgrading the electrical panel to create dedicated circuits for each EVSE unit if none are already available;
• Upgrading the electrical service to provide sufficient electrical capacity for the site;
• Locating EVSE on parking levels above or below the level with electrical service; and/or
• Meeting ADA accessibility requirements such as ensuring the parking spaces are level.

Connecting the EVSE to the Electrical Service

The EVSE unit is connected to the electrical service by wiring enclosed in an electrical conduit. A surface-mounted conduit can be placed along a wall or ceiling. If the conduit needs to run underground, such as in a parking lot, contractors will trench or bore a path for the conduit.

For Level 2 commercial EVSE in the EPRI study, the installation cost break down is approximately:

- Labor: 55 - 60%
- Materials: 30 - 35%
- Permits: 5%
- Tax: 5%

Assuming $100 per foot to trench through concrete, lay the conduit, and refill, it would cost:

- $5,000 to trench 50 feet
- $10,000 to trench 100 feet

“Electric service” refers to the utility infrastructure that provides power to customers.

This infrastructure consists of many components such as power generating stations, substations, transmission lines, and distribution facilities, including transformers.

Level 2 commercial sites that required special work such as trenching or boring were about 25% more costly than those that did not need special work (EPRI 2013).
When trenching is needed, contractors will dig the trench, lay the conduit, and then back-fill the trenched area. An open trench is shown in Photo 7 and replaced trench is shown in Photo 8. Before digging, a contractor will need to have any existing buried utilities marked by contacting a state’s utility marking service (Miss Utility or 811). In some areas of the country, it costs from $10-$20 per foot to trench through soil, and $100-$150 per foot to trench through asphalt or concrete. The total cost of trenching is affected by:

- Type of material being dug (asphalt, concrete, or soil);
- Labor costs;
- Distance to be traversed (wire pull boxes may be needed for long distances);
- Asphalt or concrete replacement (if needed);
- Re-landscaping (if needed);
- Re-striping parking areas (if needed); and/or
- Temporarily closing roads or parking lots (if needed).

For some sites, directional boring may be a more cost effective method for installing the conduit in longer runs. Whereas trenching opens the ground from above to dig a path, the boring process consists of drilling a tunnel underneath the surface. Since boring is less invasive, there are fewer costs for disposing of removed concrete and restoring the surface to its original appearance. It also has the added benefit of not disrupting traffic flows. However, enough room must be available to locate boring pits at the starting and ending points of the bore path.

**Electrical Upgrades**

It is important to consult with a licensed electrician when installing EVSE. In most cases, each EVSE unit must have an available dedicated circuit. There are some cases where multiple EVSE can be connected to a dedicated circuit, such as when the circuit is controlled by an energy management system. Be aware that this option is available and have your licensed electrician provide additional guidance.

The site must also have sufficient electrical capacity at the appropriate voltage flowing from the utility to the site’s electrical panel to meet the EVSE power needs. If the site does not meet these requirements, then it will need electrical service upgrades. Contact the utility to make sure that the system can handle the load.

Electrical work can vary from a simple electrical panel modification to more costly transformer upgrades or installations. Site hosts are encouraged to choose an EVSE design that meets their projected requirements. However, to minimize costs, consideration should be given to a design that doesn’t require more power than the available electrical capacity. If electrical upgrades are necessary, the costs can be minimized by placing the EVSE unit close to the electrical service. A long distance from the EVSE to the electrical service can lead to higher trenching costs. It can also lead to higher material costs in order to meet electrical requirements (e.g., larger wire to account for voltage drops).

### 3 Fundamental EVSE Electrical Needs

1. A dedicated circuit for each EVSE unit on the electrical panel (in most cases).
2. Sufficient electrical capacity from the utility connection to the electrical panel.
3. Sufficient electrical capacity at the panel.
**Electrical Panels**
If there is insufficient capacity on the electrical panel for the dedicated circuit(s), an electrician will need to create additional capacity by replacing or upgrading the panel, re-working the panel to provide more breaker positions, or adding a sub-panel for the EVSE units. If there is sufficient capacity on the panel, then additional breakers can be simply added to the panel to create the necessary dedicated circuits.

**New or Upgraded Electrical Service**
When a customer requests new or upgraded electrical service to power EVSE, the utility will make sure that the existing or new electrical service will safely deliver the proper voltage and power requested for the equipment being installed. Some installations require upgrades to the electrical service, such as upgrading the utility distribution line and/or transformer, or installing a new transformer. DCFC sites or sites with many Level 2 units are more likely to require a service upgrade than a single Level 1 or Level 2 EVSE. For the DCFC stations along the WCEH, it cost $10,000-$25,000 for service upgrades such as installing a new transformer (Botsford 2014). Some installations may need to bring in new electrical service from the grid to the host site. In the EV Project, the costs of extending new electrical service for DCFC installations varied from $3,500-$9,500 per site (INL 2015a).

In Seattle, one large commercial building was able to bundle energy efficiency upgrades with their EVSE installations as a way to avoid upgrading the electrical service for the building. They were able to free up electrical capacity with a large lighting retrofit for the facility.

**Metering Systems**
Some utilities may have special commercial rates for PEV charging, which requires a separate electrical service and meter. The electricity consumed at the EVSE can be measured by the EVSE unit software, which is typically a feature available through a network subscription. However, for separate utility billing, the meter accuracy must meet the utility’s billing standard. An external meter can also be installed for networked or non-networked EVSE. Photo 9 shows a typical electrical meter. The cost for installing a new service with a separate meter depends on the distance to the power source, trenching requirements, local codes, and the amount of labor required for connecting the meter to the electrical service. Some utilities offer incentives to reduce the cost associated with installing a separate meter.

**Planning for Growth**
It is a good practice to consider long term EVSE needs when installing an EVSE unit. If a site host anticipates installing more EVSE in the future, it is cost effective to install conduit from the electrical panel to future EVSE locations while the ground is already trenched for the

---

*Photo 9. Electrical meter and switch servicing Level 2 EVSE. Photo from Don Karner.*

---

About 72% of Level 2 commercial installations in the EPRI study required work on the electrical panel.

It is important to work with the utility early in the process to minimize costs, optimize the electrical design, and eliminate scheduling bottlenecks.

Upgrading the electrical service for future EVSE loads and installing conduit to future EVSE locations during the initial EVSE installation can result in significant future cost savings.
initial EVSE installation. Future EVSE installations would simply require running wire through the existing conduit and putting the EVSE unit in place. Upgrading the electrical service for the anticipated long term EVSE electrical load is also recommended. These steps may result in an increased initial installation cost but will result in significant cost savings if additional EVSE are installed in the future.

Labor Costs

Labor costs for EVSE installation will vary based on the contractor’s hourly rate and the time it takes to perform the work. These costs are affected by the contractor’s experience and the geographic location. Complying with prevailing wage laws or using union labor may cost 20% more than similar work done for private sector entities (EPRI 2013).

Visibility and Aesthetic Factors

Aesthetic requirements such as making conduit less visible, replacing disturbed landscaping, or placing the unit in a location that requires extensive trenching can add cost to a basic installation. Some site hosts may choose to place the EVSE in a high visibility location to bring attention to the EVSE and make it easy for drivers to find. However, choosing a high visibility location can add significant installation costs if it is far from the electrical panel.

In the EPRI study, 9% of commercial Level 2 sites had site factors including visibility and aesthetics that more than doubled the average installation cost from $3,552 to $8,005.

Poured Foundation and Traffic Protection

Some pedestal mounted EVSE are directly installed on an existing hard surface such as a sidewalk. Others will require a concrete foundation as part of the installation process. Foundations range in complexity from placing a precast base on the surface for about $100 to digging a hole and pouring concrete. Hole depth, and therefore the amount of concrete needed, depends on the depth to which the ground water in soil can freeze. In some locations, a site owner may install bollards or wheel stops to protect the EVSE from being damaged by vehicles. A ballpark bollard cost is $200-$800 and wheel stops are generally $100-$200.

Geographic Region

Some states have notably lower or higher EVSE installation costs than average. The EV Project installed public Level 2 EVSE in 13 markets around the country. The average installation cost for those markets ranged from $2,100-$4,600, as shown in Figure 6. The primary reason for the geographic difference in cost is the labor cost in each region. Additionally, each region’s local authority having jurisdiction (AHJ) had varying interpretations of ADA requirements. The Washington D.C. installations had the least expensive average
cost because nearly 80% of them were wall mounted. The Atlanta installation costs had a high average since many of them were installed in a high visibility parking space requiring long electrical runs from the electric service panel. Costs for labor and permitting at California sites made them among the most expensive sites (INL 2015b).

**Installation Cost Ranges and Examples**

Installation costs are highly variable and are difficult to compare from one site to another. The installation cost ranges and averages described in Table 2 are based on past installations and provide a ballpark idea of how much future installations may cost. These installation costs do not include the cost of the EVSE unit.

**Ballpark EVSE Installation Costs**

<table>
<thead>
<tr>
<th>EVSE Type</th>
<th>Average Installation Cost (per unit)</th>
<th>Installation Cost Range (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>not available</td>
<td>$0-$3,000* Source: Industry Interviews</td>
</tr>
<tr>
<td>Level 2</td>
<td>-$3,000 EV Project (INL 2015b)</td>
<td>$600-$12,700 EV Project (INL 2015b)</td>
</tr>
<tr>
<td>DCFC</td>
<td>-$21,000 EV Project (INL 2015d)</td>
<td>$4,000-$51,000 EV Project (INL 2015d) and (OUC 2014)</td>
</tr>
</tbody>
</table>

Table 2. Ballpark costs for installation of Level 1, Level 2, and DCFC EVSE (not including the EVSE unit.)

*The $0 installation cost assumes the site host is offering an outlet for PEV users to plug in their Level 1 EVSE cordsets and that the outlet already has a dedicated circuit.

**Level 1 Installation**

Offering Level 1 charging at a site can range from providing an electrical outlet for PEV drivers to plug in a portable Level 1 cordset (shown in Photo 11) to installing a wall mounted or pedestal mounted EVSE unit.

When offering an electrical outlet for Level 1 charging, the installation process may be as simple as confirming the outlet is a commercial grade National Electrical Manufacturers Association (NEMA) outlet and it is connected to a dedicated circuit breaker. Ground-fault circuit interrupter (GFCI) outlets, which protect against electrical shock, are required for outdoor use. It is a good practice to ask an electrician to inspect an outlet and ensure it is in good condition before using it for Level 1 charging. If a dedicated outlet is available within reach of the parking space, there may be no additional installation costs.

Photo 11. The Juice Bar at Charles Hotel in Cambridge, Mass., offers a wall outlet for PEV drivers to plug in their Level 1 cordset. Photo from Steve Russell.
According to the North Carolina PEV Task Force, if a new outlet or upgrade to a 120V circuit is needed, there may be a cost of $200-$500, assuming no unusual construction is needed (NCPEV 2013). A site host may choose to install outlets along a parking lot. A reasonable cost range for installing an outlet and dedicated circuit in a parking lot or garage is $300-$1,000 per outlet. Installing multiple outlets on a site can result in the costs being closer to the lower end of that cost range. Installing a wall mounted Level 1 EVSE hardwired to the electrical service would also cost around $300-$1,000 assuming the unit is located within 50 feet of the electrical service and no trenching or complex electrical work is needed.

The installation cost for offering pedestal mounted Level 1 EVSE (shown in Photo 12) will greatly depend on the selected location. Trenching or boring to connect the EVSE to the electrical service can add a significant cost to the installation process. A ballpark cost range for a pedestal mounted Level 1 EVSE installation, assuming no major electrical upgrades are needed, is $1,000-$3,000.

Additionally, there are products available that allow site hosts to install multiple electrical outlets mounted to a wall or a pedestal. This enables site hosts to place outlets in a convenient location for PEV drivers to plug in their portable Level 1 EVSE cordsets.

**Level 2 Installation**

There is significant variation in costs for installing Level 2 EVSE. The EV Project has cost data from 2,809 non-residential, workplace and public, Level 2 EVSE installed between 2011 and 2013 with an average installation cost of $2,979. The average installation cost for workplace charging ($2,223) was lower than for public charging ($3,108). This cost information is on par with the EPRI study’s non-residential Level 2 installations, which cost on average $3,005 per port. The graphs in Figure 7 and Figure 8 show the distribution of Level 2 EV Project installation costs, one for public charging (Figure 7) and the other for workplace charging (Figure 8).

---

**Figure 7. Distribution of EV Project per unit Level 2 public installation costs for about 2,500 installations.** Graph from INL.
There is also a wide variation in cost for installing DCFC. In the EV Project, the cost to install over 100 dual port DCFC units ranged from $8,500 to $50,820 with an average installation cost of $23,662. The lower installation costs ($8,500-$20,000) were generally for sites that were able to use existing electrical service. Figure 9 shows the distribution of EV Project DCFC installation costs, by cost tier. The WCEH had an average installation cost of $40,000 for the DCFC. The higher DCFC installation costs for the WCEH compared to the EV Project is partially due to many WCEH installations taking place in rural locations that required electrical service upgrades. The WCEH project had rigorous design and construction standards that required a deep concrete foundation. The EV Project focused on taking advantage of existing electrical service infrastructure to drive down costs.

The Orlando Utilities Commission (OUC) installed five DCFC units in Orlando with installation costs ranging from $4,000-$9,000 each (OUC 2014). They were able to minimize costs through careful selection of site locations such that minimal trenching or boring was needed to connect the DCFC to the electrical service. OUC also conducted a competitive bidding process that included training electricians on how to install EVSE.
Operation and Maintenance (O&M) Costs

Operation and maintenance (O&M) costs for EVSE include charges for electricity, software subscriptions, station management, billing, site rental or lease, preventative maintenance, and corrective maintenance.

Electricity Consumption Charges

EVSE operating costs include the cost of electricity to charge the vehicles. Charging hosts are encouraged to contact the electric utility to review the options for rate structure and any implications of using PEV charging rates or time-of-use (TOU) rates on the facility as a whole. In general, the annual electricity consumption cost for an EVSE owner is determined based on the electricity rate measured in dollars per kilowatt-hour ($/kWh) and the amount of electricity consumed. Commercial electricity rates typically range from $0.08-$0.15 per kWh, while industrial fleets could have lower rates. The consumption of electricity will vary based on the number of vehicles using the EVSE, power output of the EVSE, vehicle power acceptance rate, climate, and amount of time the vehicles charge. See Appendix C for electricity consumption examples for Level 1, Level 2, and DCFC EVSE.

Electricity Demand Charges

In addition to electricity costs based on energy consumption, many commercial and industrial facilities may be subject to power demand charges from the utility. The use of Level 2 and DCFC stations located at these facilities may result in higher electricity costs by increasing the facility’s peak electricity demand. Some locations that have not previously been subject to demand charges may find that the additional power consumption from EVSE will now result in demand charges.

Demand charges can cause a business’ monthly utility bill to increase by as much as four times (INL 2015d). An EVSE site can experience demand charges from $0 to over $2,000/month. At many sites, demand charges can be avoided by strategically managing the EVSE energy consumption such as charging at off peak times or staggering vehicle charging during high consumption periods. Some EVSE models come with energy management features. Separate load management systems that automatically sequence multiple EVSE to avoid demand charges can also be purchased. It is recommended that the utility be contacted prior to installation of the EVSE to obtain information regarding demand charges and how they may be minimized or eliminated.

---

4 Retail electricity rates for each state by sector can be found at http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a.
5 Each utility has its own rate structure that may or may not include demand charges. Once a customer uses power in excess of the utility’s threshold, typically 20-50kW, the utility transitions the customer to a rate structure that includes demand charges. The demand charge is determined by looking at the consumer’s average energy consumption in 15 minute intervals for the whole month, identifying the highest average value (kW), and charging a fee ranging from $3-$40/kW. The utility may also have different fees based on the time of day and season. Any use of electricity that causes peak demand to exceed this highest average value will result in increased demand charges for the entire month.
Network Fees

If an EVSE unit is networked, the owner will pay a fee that covers the cost for cellular/Wi-Fi network communications and back office support. Network fees will vary from $100-$900 annually, depending on the type of EVSE unit (Level 1, Level 2, DCFC), the EVSE unit features, and the EVSE manufacturer or provider.

Maintenance and Repair

Since the PEV market is relatively new, there is not much information available about the maintenance costs or lifespan of EVSE. The information below addresses the potential maintenance costs according to best assumptions from industry experts. The type of EVSE and its features will affect the maintenance and repair costs. Regular maintenance is generally not required for Level 1 and Level 2 basic EVSE units. If the EVSE is damaged due to vandalism or driving over a cord, it is more common to replace the damaged component than to try to repair it. For budgeting purposes, some industry stakeholders assume EVSE has at least a 10 year lifespan.

EVSE units with advanced features or communications systems may require more periodic maintenance than a basic unit simply because there are more components that have the potential to malfunction. In many cases a local electrician has the skills to troubleshoot problems with units. Extended warranties and other options made available by the EVSE manufacturers can reduce the long term maintenance and repair costs. In addition to warranties that cover replacement EVSE hardware, there may be warranties available to cover the labor to perform a repair.

Level 1 EVSE

Over time, there may be a need to replace the commercial grade NEMA electrical outlet used with portable Level 1 EVSE cordsets. Depending on the outlet age, type, and use, the outlet should function appropriately for many years. The cost of an outlet can range from $1-$40 depending on whether it is for an indoor or outdoor application, the quality level, and if it protects against electrical shock (GFCI rated). An electrician’s fee for replacing outlets is in the $50-$75 range, depending on how many outlets need to be changed.

Maintenance Budget (sample case):

- Replacement or upgrade of electrical outlet to maintain safe operation;
- Replacement of cordset due to vandalism or misuse; and
- Replacement of EVSE unit or cordset at the end of its useful life.

Level 2 EVSE

Basic Level 2 EVSE require minimal maintenance. They are often modular in design, so that malfunctioning components can be replaced, avoiding the cost of replacing the whole unit.

Maintenance Budget (sample case):

- Repair or replacement of EVSE components due to malfunction or vandalism (if not covered under warranty);
• Replacement of EVSE unit at the end of its useful life;
• For networked units, add:
  - Cost of technician troubleshooting (if not covered in network subscription fees), and
  - Cost of manual resets for software malfunctions.

DCFC EVSE

DCFC units require ongoing maintenance because they have cooling systems, filters, and other components that do not exist in Level 1 or Level 2 units.

Maintenance Budget (sample case):
• Replacement of charge cord due to vandalism or misuse;
• Repair or replacement of EVSE components (if not covered under warranty);
• Technician troubleshooting (if not covered in network subscription fees);
• Manual resets for software malfunction (if not covered in network subscription fees); and
• Preventative and corrective maintenance.

Station Management

Management activities for a station or cluster of stations might include managing driver access, billing, providing driver support, and monitoring the station. Renting or leasing a location, such as parking spots, can be an added operational cost if the EVSE owner does not own the property. The value of a parking space will vary widely depending on geographical location.

Additional Cost Factors

Incentives

Many incentives are available to reduce the cost of installing EVSE. Electric vehicles are of greater interest in certain parts of the country due to policies enacted for zero emissions vehicles and low carbon fuels. EVSE incentives offered by state agencies or by local utilities take a variety of forms such as tax credits/exemptions, rebates, grants, or loans. Figure 10 illustrates the type of electric vehicle incentives in each state, as of July 2015. Details about these incentives can be found in Appendix D. Because available incentives frequently change, visit the AFDC Laws and Incentives website at afdc.energy.gov/laws for current incentive information. In addition to financial assistance, many states provide technical assistance to incentivize EVSE installations. While the Federal Alternative Fuel Infrastructure Tax Credit has expired, equipment installed before December 31, 2014 may still be eligible.
Figure 10. This map illustrates the types of EVSE incentives offered in each state as of July 22, 2015. Appendix D provides details about these incentives. This information is frequently changing; visit http://www.afdc.energy.gov/laws for latest incentive information. Graphic from Oak Ridge National Laboratory.

Table 3 describes some current state incentives and provides examples of how they can affect the cost of an EVSE unit.

<table>
<thead>
<tr>
<th>Incentive Example</th>
<th>Incentive Description</th>
<th>Base EVSE Unit Cost</th>
<th>EVSE Unit Cost after Incentive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income Tax Credit</td>
<td>Income tax credit for 20% of the cost of the EVSE, up to $2,500.</td>
<td>$4,000</td>
<td>$3,200</td>
</tr>
<tr>
<td>Level 2 Rebate</td>
<td>$1,000 rebate for the purchase and installation of Level 2 EVSE</td>
<td>$3,000</td>
<td>$2,000</td>
</tr>
<tr>
<td>DCFC Rebate</td>
<td>$15,000 rebate for the purchase of DC fast charge EVSE.</td>
<td>$30,000</td>
<td>$15,000</td>
</tr>
</tbody>
</table>

Table 3. Example incentives for purchasing and/or installing EVSE units.
Permitting and Inspection

Permitting costs vary by state, county, and/or municipality. The local AHJ requires permits and inspections for commercial electrical upgrades. The costs may be fixed or determined on a site-by-site basis. Some localities are moving to streamline the permitting process as PEV adoption increases. In addition to the permit fee charged by the AHJ, there may also be a cost for the contractor’s time spent to obtain the permit. Level 2 EVSE installed by the EV Project had permitting costs ranging from $14-$821 (Francfort 2013). Depending on the permitting authority, commercial installations might require engineered drawings for the permitting process. Engineering drawings can cost about $1,000-$3,000 (INL 2015a).

Adhering to ADA requirements to ensure access to EVSE for people with disabilities are another project cost consideration. ADA compliance can require special curb cutouts, van accessible parking spaces, level parking spaces, and specific connector heights, all of which affect the design and cost of the EVSE. Photo 15 shows an EVSE unit with a connector designed to meet ADA requirements.

The US Access Board has established accessibility standards for public facilities, such as parking areas and fueling stations, but there are not specific ADA requirements for EVSE. Some sites may not be able to fully meet accessibility standards and will be encouraged to meet the requirements to the extent possible (Chittenden County RPC 2014). Work with your local AHJ to determine how ADA requirements affect your site.

Workplace, Public, and Fleet EVSE Costs

According to the EPRI study comparing Level 2 installation costs, fleet EVSE stations had the lowest installation cost, followed by workplace charging, and public sites had the highest cost. The average cost per port and per EVSE unit for each of these venues is shown in Figure 11. The higher costs for public and workplace settings are due to complex siting issues, high visibility parking locations, constraints on available parking spaces, ADA requirements, and available electrical capacity (EPRI 2013).
Cost Factors to Consider for Workplace Charging

While many PEV drivers charge their vehicles primarily at home, the availability of EVSE at work can help owners nearly double their vehicles’ all-electric daily commuting range. Visit the DOE Workplace Charging Challenge website for more resources on installing and managing EVSE in the workplace: [energy.gov/eere/vehicles/ev-everywhere-workplace-charging-challenge](http://energy.gov/eere/vehicles/ev-everywhere-workplace-charging-challenge)

Charging Level

Workplace EVSE are typically Level 1 or Level 2 single or dual port units. Employers can provide Level 1 charging either through offering electrical outlets (shown in Photo 16) or hardwired Level 1 EVSE units. For many employees, Level 1 charging has sufficient power to replenish their vehicles’ batteries during work hours.

Photo 16. Electrical outlets are available along a row of parking stalls for PEV drivers to charge their vehicles using a Level 1 cordset. Photo from Jonathan Kirchner, Coca-Cola.
If an employer chooses to provide Level 2 EVSE, multiple employees may be able to charge their vehicles during the day using a single port. This requires a management policy that covers disconnecting the connector from one vehicle and moving it to another vehicle. Level 2 EVSE decreases the vehicle charge time, but requires a higher power circuit for operation. As the quantity of EVSE units at a workplace increases, electrical upgrades may be required, which could increase costs. Talk with an electrical contractor to determine how much power is available from your electrical service. The amount of available power will affect the quantity and type of EVSE that can be installed at your location without the need for extensive electrical upgrades.

**EVSE Features**

While some employers will choose the most basic system, others may want networking, access control, point of sale, and energy monitoring/management. Employers can minimize their costs by not paying for features that they do not need or are unlikely to use.

Some employers offer free charging to employees and do not need POS capabilities. An employer that wishes to charge employees for PEV charging could purchase an EVSE unit with POS capability or simply charge employees a flat monthly rate. Careful consideration should be given to access control and pricing policies. If an access control mechanism is not in place to limit free EVSE use to employees and guests, an employer might unintentionally attract other PEV drivers to charge their vehicles after business hours.

**Location Selection**

Choosing a wall mounted unit close to an existing electrical panel will typically be the lowest cost installation option. Keep in mind that PEV drivers do not need prime parking spots near a building’s entrance, although this is sometimes done as an added incentive for drivers to adopt PEV technology. If that prime location is far from the electrical service, there will be a significant cost to connect the EVSE to the electrical service. Choosing a less prominent, but easier to install location will minimize costs. Consult resources on the DOE Workplace Charging Challenge website for information on how to choose EVSE locations. The EVSE in Photo 17 are close to the building which reduces trenching costs.

**Installation**

The EPRI study found that Level 2 EVSE at workplace sites cost, on average, $2,704 per port and $3,842 per EVSE (refer to Figure 11). For the EV Project Level 2 workplace EVSE, the installation of pedestal units cost $2,305 on average and the installation of wall mounted units cost $2,000 on average. Workplace charging sites frequently involve the installation of two or more EVSE, which lowers the installation cost per unit. Workplace installations typically cost less than public installations because they have a higher percentage of stations with wall mounted units and there is more flexibility to place EVSE close to the electrical service panel (INL 2015c).

**Cost Factors to Consider For Public Charging**

Public charging locations include, but are not limited to, parking garages, transportation hubs, retail stores, and leisure destinations.
Charging Level

Public charging is typically a mix of Level 2 and DCFC units, although Level 1 EVSE may make sense for some sites. It is important to take into consideration the amount of time a vehicle will stay parked in the location and the amount the vehicle will likely need to replenish its battery. A DCFC unit may be the best choice close to an interstate highway, while Level 2 EVSE may be appropriate for a shopping mall.

EVSE Features

Some public EVSE providers may require POS and billing capabilities to charge consumers for the electricity. EVSE units with more features will be at the higher end of the cost range. Other public EVSE providers may not need these features because they incorporate the charging service into a parking fee or provide free charging. Offering free PEV charging may provide intangible or indirect benefits such as positive public relations and increased revenue from purchases made by PEV owners waiting for their vehicles to charge. These intangible or indirect benefits may offset the cost of the electricity use. A networked station can allow the site host to provide free charging during business hours and charge a fee for charging after business hours. To minimize EVSE costs, it is important to identify your business model prior to determining the needed EVSE features.

Installation

Installation costs for public sites are generally higher than for workplace and fleet sites. This is due to higher permitting related costs, EVSE located far from the electrical service, and necessary electrical upgrades. Additionally, there are often more jurisdictions and overall entities involved making the process more complicated and expensive. Public charging sites frequently involve the installation of two or more EVSE which can lower costs per EVSE. The EPRI study showed that Level 2 EVSE at public sites cost on average $3,343 per port and $4,448 per EVSE (refer to Figure 11). The public Level 2 EVSE installed through the EV Project had an average installation cost of $3,108. Pedestal unit installation averaged $3,308 while wall mounted unit installation averaged $2,042 (INL 2015c).

Visibility and Signage

Developers at public sites often value high visibility locations for the EVSE to ensure that it is well utilized. This can significantly increase the costs for trenching, boring, and/or electrical upgrades. Rather than incurring larger installation costs for a high visibility EVSE location, site hosts are encouraged to place the EVSE unit close to the electrical service and use signage to help PEV drivers find it. Signage is used to help PEV drivers locate EVSE and to discourage drivers from using the parking space if they are not charging a vehicle. The cost to install signage is a minimal portion of the total installation costs.

Transaction Costs

A public EVSE unit that uses a credit card payment system should expect to pay a transaction fee of about 5-7.5% (Botsford 2012).
Vandalism

Public EVSE units that provide unrestricted site access may be more subject to vandalism than workplace or fleet EVSE. Site owners may choose to build the cost of EVSE repairs or replacement into their financial plans.

Electrical Upgrades

For DCFC, the EVSE should be located in close proximity (preferably within 100 feet) to existing electrical service lines, to avoid the need for installing transformers. Work with your local utility to determine viable low cost locations for DCFC public charging.

Advertising

A public host may choose an EVSE unit that has a display screen and use that screen for advertisements. Advertising revenue can help offset the costs of providing PEV charging.

Cost Factors to Consider for Fleet Charging

There are a growing number of PEVs on the market that work well in fleet applications.

Charging Level

Fleet charging will typically be a mix of Level 1 and Level 2 units and may include the use of multiple port units. The amount of time needed to charge all the fleet vehicles will be an important consideration when selecting the charging level. Medium- and heavy-duty vehicles will have larger batteries than light-duty vehicles and will therefore affect the EVSE selection. DCFC may be needed if fleet vehicles require higher power and/or faster charging because of their fleet vehicle usage patterns. Photo 19 shows the fleet EVSE at the Frito Lay Depot in Federal Way, Wash.

Demand Charges

A fleet that is installing many EVSE units and operating them all at the same time may face demand charges. However, overnight charging of fleets may avoid peak demand issues. Some fleets may be able to utilize a fixed schedule for charging PEVs and have a staff person manually plug in vehicles on a timetable that avoids demand charges. It is important for fleet managers to contact the utility before purchasing EVSE to understand both the utility’s pricing structure for demand charges and the full cost impact of PEV charging on demand charges.

EVSE Features

After assessing the fleet’s charging needs, the fleet manager will work with an EVSE manufacturer, electrician, and utility to determine the lowest cost solution to meet the fleet’s needs. For example, if tracking the fleet’s energy consumption is desired, the fleet manager may compare the cost of purchasing a sophisticated
EVSE unit with energy monitoring capabilities to the option of using a basic EVSE unit and a third party or aftermarket metering and data collection system.

Installation

Installation costs for fleet sites are generally lower than workplace and public sites. This is partly due to installation without public access, lower permitting related costs, and because fleets typically are better able to minimize cost through optimal siting choices. The EPRI study determined that Level 2 EVSE at fleet sites cost, on average, $2,018 per port and $2,109 per EVSE (refer to Figure 11).

Tips for Minimizing EVSE Costs

**EVSE Unit Selection**
- Choose the EVSE unit with the minimum level of features that you will need.
- Choose a wall mounted EVSE unit, if possible, so that trenching or boring is not needed.
- Choose a dual port EVSE unit to minimize installation costs per charge port.
- Determine the electrical load available at your site and choose the quantity and level of EVSE units to fit within that available electrical capacity.

**Location**
- Place the EVSE unit close to the electrical service to minimize the need for trenching/boring and the costs of potential electrical upgrades.
- Instead of locating the EVSE at a highly visible parking spot a great distance from the electrical panel, use signage to direct PEV drivers to the EVSE unit.
- If trenching is needed, minimize the trenching distance.
- Choose a location that already has space on the electrical panel with a dedicated circuit.

**Long Term Planning**
- Contact your utility early in the planning stages to discuss electricity consumption and demand charges as well as electrical service needs. Avoid utility demand charges by balancing charging time windows with other electricity usage and working closely with your utility.
- Consider the quantity and location of EVSE that you plan to install over the next 10-20 years when installing your first unit. Upgrade your electrical service for your anticipated long term EVSE load and run conduit to your anticipated future EVSE locations. This will minimize the cost of installing future units.
- Consider the electricity infrastructure for EVSE when building a new facility. It is less expensive to install extra panels and conduit capacity during initial construction than to modify the site later.

Summary

As is discussed in this report, many factors lead to highly variable costs associated with EVSE. Utilizing best practices for choosing EVSE types, quantities, and locations will help minimize the financial impact of buying and installing EVSE. Ballpark cost ranges for EVSE units and installation are shown in Table 4, which reproduces the information in Table 1 and Table 2. Within each charging level (Level 1, Level 2, and DCFC),
the EVSE unit cost depends on the mounting system, number of charge ports, communications system, and additional features. Installation costs have the most significant variability and are influenced by how much electrical work is needed, how much trenching or boring is needed, permitting, labor rates, and ADA requirements. Contact your utility, EVSE manufacturers, and EVSE installers for a site assessment and cost estimate.

**Ballpark EVSE Unit and Installation Costs**

<table>
<thead>
<tr>
<th>EVSE Type</th>
<th>EVSE Unit* Cost Range (single port)</th>
<th>Average Installation Cost (per unit)</th>
<th>Installation Cost Range (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>$300-$1,500</td>
<td>not available</td>
<td>$0-$3,000**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Source: Industry Interviews</strong></td>
</tr>
<tr>
<td>Level 2</td>
<td>$400-$6,500</td>
<td>-$3,000 EV Project (INL 2015b)</td>
<td>$600-$12,700 EV Project (INL 2015b)</td>
</tr>
<tr>
<td>DCFC</td>
<td>$10,000-$40,000</td>
<td>-$21,000 EV Project (INL 2015d)</td>
<td>$4,000-$51,000 EV Project (INL 2015d) and (OUC 2014)</td>
</tr>
</tbody>
</table>

Table 4. Ballpark costs for EVSE units and installation.

*EVSE unit costs are based on units commercially available in 2015.

**The $0 installation cost assumes the site host is offering an outlet for PEV users to plug in their Level 1 EVSE cordsets and that the outlet already has a dedicated circuit.

There is general industry consensus that the cost of EVSE units is trending downwards and will continue to decrease. Installation costs, however, are highly variable and there is no consensus among industry stakeholders about the direction of future installation costs.

State and local incentives will continue to influence and aid in establishing EVSE installations. In addition to funding assistance, the organizations offering incentives (such as state agencies and utilities) will likely offer technical assistance, recommend vendors, and conduct or suggest individuals to conduct site evaluations. There are many organizations that can guide an EVSE host through the evaluation of site, selection of EVSE unit, and installation.

It is important for employers, business owners, and fleet operators to understand the costs involved in installing, operating, and maintaining EVSE in order to make informed decisions regarding long term EVSE development. Thoroughly evaluating the needs and opportunities for PEV charging, as well as strategically determining the optimal EVSE features, location, and quantity are critical for finding the best EVSE solution for a specific site. Utilizing incentives, cost saving approaches, and innovative ownership models will make installing EVSE more attractive to potential site hosts.

Technology is always evolving and future advancements in PEV charging are inevitable. Wireless PEV charging, also called inductive charging, is currently being developed. With wireless charging, drivers will simply park over a charging pad and will not need to plug a connector into the vehicle. The future may also bring bidirectional charging, allowing a vehicle to both charge its battery from the utility and provide power back to the utility via the electrical grid. The timeframe for when these advancements will penetrate the market and the impact on the cost of PEV charging is currently unclear.

Installing more public, workplace, and fleet EVSE is critical for providing a robust charging infrastructure network needed for the growing PEV market. Workplace and public charging will enable drivers to purchase PEVs even if they do not have access to residential charging infrastructure. By purchasing PEVs and EVSE,
fleets can have a significant impact on advancing the PEV market, as well as reducing greenhouse gas and other emissions that contribute to climate change and smog. With more PEVs on the road, we are making progress towards the Clean Cities goal to reduce our dependence on petroleum and advance our nation’s energy security.
Additional Resources
For more information about EVSE, visit the resources below.


2. Clean Cities’ Plug-In Electric Vehicle Handbook for:
   - Public Charging Station Hosts: [http://www.afdc.energy.gov/pdfs/51227.pdf](http://www.afdc.energy.gov/pdfs/51227.pdf)


4. INL Lessons Learned papers from the EV Project: [http://avt.inl.gov/evproject.shtml](http://avt.inl.gov/evproject.shtml)


10. Clean Cities YouTube Channel: [https://www.youtube.com/user/CleanCitiesTV](https://www.youtube.com/user/CleanCitiesTV)
Appendix A: Acronyms, Definitions, and Equipment Overview

**Acronyms**

AC – Alternating current
ADA – Americans with Disabilities Act
AHJ – Authorities having jurisdiction
DC – Direct current
DCFC – Direct current fast charger
EPRI – Electric Power Research Institute
EV – Electric vehicle
EVSE – Electric vehicle supply equipment
GFCI – Ground-fault circuit interrupter
NEC – National Electrical Code
NEMA – National Electrical Manufacturers Association
NFPA – National Fire Protection Association
NREL – National Renewable Energy Laboratory
NYSERDA – New York State Research and Development Authority
OUC – Orlando Utilities Commission
INL – Idaho National Laboratory
PEV – Plug-in electric vehicle
PHEV – Plug-in hybrid electric vehicle
POS – Point of sale
RFID – Radio-frequency identification
SAE – Society of Automotive Engineers
TOU – Time-of-use
UL – Underwriters Laboratories
WCEH – West Coast Electric Highway
WSDOT – Washington State Department of Transportation

**EVSE Charging Types**

AC Level 1 EVSE, commonly referred to as Level 1, provides charging through a 120-volt (V) alternating current (AC) circuit and requires a dedicated branch circuit. Most plug-in electric vehicles (PEVs) come with a Level 1 EVSE cordset. One end of the cord is a standard, three-prong household plug. The other end is an SAE J1772 standard connector that plugs into the vehicle. Level 1 EVSE that can be wall mounted or pedestal mounted at parking spots is also available. Depending on the battery and vehicle type, Level 1 charging adds about 2 to 5 miles of range per hour of charging time.
AC Level 2 EVSE, commonly referred to as Level 2, provides charging through a 240V (typical in residential applications) or 208V (typical in commercial applications) electrical service. Level 2 EVSE requires installation of a dedicated circuit of 20-80A, in addition to the charging equipment. Most Level 2 EVSE uses a dedicated 40A circuit. As with Level 1 equipment, Level 2 equipment uses the SAE J1772 connector. Depending on the vehicle and circuit capacity, AC Level 2 adds about 10-20 miles of range per hour of charging time.

DCFC (Direct Current Fast Charger) enables rapid charging and is generally located at sites along heavy traffic corridors and at public fueling stations. It is sometimes called DC Level 2 or DC fast charging. Some DC fast charging units are designed to use 480V input, while others use 208V input. PEVs equipped with either a CHAdeMO or SAE DC fast charge receptacle can add 50 to 70 miles of range in about 20 minutes.

PEV Charging Components

Charger* – An electrical device that converts alternating current energy to regulated direct current for replenishing the energy of an energy storage device (i.e., battery), and may also provide energy for operating other vehicle electrical systems. A PEV charger is located on the vehicle.

Cord – An EVSE component that transmits electricity from the control box to the connector.

Cordset – The cordset provides AC Level 1 charging and includes the connector, cord, control box, and standard three prong household plug (NEMA 5-15 connector). The cordset can connect a vehicle to an electrical outlet that is rated for the appropriate voltage.

Connector* – A conductive device that, by insertion into a vehicle inlet, establishes an electrical connection to the electric vehicle for the purpose of transferring energy and exchanging information. This is part of the coupler.

Coupler* - A mating vehicle inlet and connector set.

EVSE (electric vehicle supply equipment) consists of all the equipment needed to deliver electrical energy from an electricity source to charge a PEV’s battery. It communicates with the PEV to ensure that an appropriate and safe flow of electricity is supplied.

Handshake – A colloquial term for the communication protocol between the EVSE and the vehicle. The handshake ensures the connector is not energized until it is inserted in the inlet and the proper communication has taken place between the vehicle and EVSE.

Vehicle inlet/receptacle* is the device on the electric vehicle into which the connector is inserted for the purpose of transferring energy and exchanging information.

*SAE Definitions
Electrical Hardware

Conduit - The electrical conduit is a tube or piping system for enclosing electric wiring. If the conduit needs to be placed underground for EVSE installation, then the installation will require trenching or boring.

Meter/Sub-Meter – Electric utilities use meters to measure the amount of electricity provided to a customer and bill for that usage. Sub-meters may be used to measure the electricity consumed by the EVSE, separate from electricity delivered to the rest of the premise. Sub-meters allow for advanced data collection and specialized electricity pricing based on the time of day.

Panel – The electrical panel (also known as breaker panel, service panel, or load center) is a box containing the circuit breakers that are wired to circuits that distribute power to the EVSE. The circuit breakers turn the power to the EVSE on and off to protect equipment from damage in the event of an electrical short or overcurrent. The circuit breaker is also used to turn off power to the EVSE when it is being serviced.

Step-down Transformer – The step-down electrical transformer converts high voltage electricity from power lines to a lower voltage that can be used by consumers. It is typically located at the utility pole but can also be placed on a concrete pad. A transformer may need to be upgraded to accommodate the electricity consumed by EVSE.

EVSE Connector Standards

CHAdeMO is a DC fast charging standard proposed as a global industry standard by the CHAdeMO association starting in 2009. It is used by the Nissan Leaf and Mitsubishi vehicles to quickly charge a vehicle with direct current through a CHAdeMO connector. CHAdeMO connectors are not compatible with SAE J1772 vehicle receptacles. Most DCFC connectors currently available in the United States uses the CHAdeMO standard.

SAE J1772 is the Society of Automotive Engineers (SAE) Recommended Practice that covers the general physical, electrical, functional and performance requirements to facilitate conductive charging of PEVs in North America. It defines the physical configuration of how the EVSE connector attaches to the vehicle receptacle and the communication process for safely providing power to the vehicle. All major vehicle and EVSE manufactures support this standard in the U.S. and use SAE J1772 compatible connectors and receptacles for Level 1 and Level 2 charging.

SAE J1772 Combined Charging System (CCS) is a revised SAE Recommended Practice that uses a single port for either AC Level 1 and 2 or DC fast charging. This standard came to market in 2014 through the Chevy Spark and BMW i3. Most major vehicle manufacturers in the United States utilize or plan to utilize connectors and receptacles based on the SAE J1772-CCS standard.
**Tesla SuperChargers** are DCFCs based on Tesla’s own connector and currently only charge Tesla vehicles. Tesla is rapidly expanding their supercharger network across the country.

<table>
<thead>
<tr>
<th>Connector Standard</th>
<th>Charging Level</th>
<th>Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE J1772</td>
<td>Level 1 and Level 2</td>
<td>All PEVs available in the U.S.</td>
</tr>
<tr>
<td>SAE J1772-CCS</td>
<td>Level 1, Level 2, and DCFC</td>
<td>Currently available: GM Chevrolet Volt and Spark EV, BMW i3, Volkswagen eGolf, and Ford C-Max Energi</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Products pending:</strong> Chrysler, Daimler, Toyota, Honda and others</td>
</tr>
<tr>
<td>CHAdeMO</td>
<td>DCFC</td>
<td>Nissan Leaf, Mitsubishi iMIEV</td>
</tr>
<tr>
<td>Tesla SuperCharger</td>
<td>DCFC</td>
<td>Tesla Model S</td>
</tr>
</tbody>
</table>

Table 5. Connector standards for each charging level and the corresponding vehicles.

Photo 24. This public parking lot in Charlottesville, VA offers DC fast charging using SAEJ1772 CCS and CHAdeMO connector standards as well as a Tesla Level 2 connector. *Photo from Margaret Smith.*
Appendix B: Codes and Standards

Check with your local fire marshal or authority having jurisdiction to ensure that you are aware of the local codes and standards for installing EVSE and selling electricity. The technical bulletin located at http://www.afdc.energy.gov/bulletins/technology-bulletin-2015-08.html reviews the role that zoning, permitting and codes, and parking ordinances can play within a comprehensive PEV and EVSE deployment strategy, and it includes a variety of state and local examples.

A U.S. National Work Group (USNWG) is developing proposed requirements for devices used to measure and sell electricity dispensed at EVSE. The group seeks to ensure that the methodologies and standards facilitate measurements that are traceable to the International System of Units. For more information including the NIST Handbook 130 “Method of Sale for Electrical Energy as Vehicle Fuel” and the NITS Handbook 44 “Device Code Requirements for Electric Vehicle Fueling,” visit http://www.nist.gov/pml/wmd/usnwg-evfs.cfm.

It should be noted that safety standards for standard residential and commercial outlets were not developed with repeated operations for charging plug-in electric vehicles in mind. The current safety standard that covers 120 volt/20 amp electrical outlets is UL 498, the Standard for Safety for Attachment Plugs and Receptacles. The protocol recommends that these electrical outlets (which are the type typically used for AC Level 1 charging) complete a number of tests to pass safety standards. These include tests wherein the receptacle has a plug inserted and removed 250 times in various conditions without sustained flaming of the material in excess of five seconds duration. Ideally, PEVs will charge more than 250 times per year and thus would plug in many times the UL 498 standard in their operational lifetime.

The National Fire Protection Association (NFPA) addresses the safe interface between PEVs and EVSE in the NEC Article 625, “Electric Vehicle Charging System.” The NEC also provides minimum requirements for performing site assessments. Specifically, NEC Articles 210, 215, and 220 contain rules that relate to calculations and loading of services, feeders, and branch circuits in all occupancies.
### Appendix C: Electricity Consumption Examples

The scenarios below are based on specified assumptions and provide an example of annual electricity cost for Level 1, Level 2, and DCFC EVSE.

<table>
<thead>
<tr>
<th>Level 1, Single Port Scenarios</th>
<th>Annual Electricity Consumption &amp; Cost</th>
<th>Installation Cost Amortized Over 10yrs/kWh &amp; cost/yr.*</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Workplace charging</strong></td>
<td>• 1 light-duty vehicle</td>
<td>• 2,184 kWh/yr</td>
<td>• EVSE Type: Level 1 120 VAC</td>
</tr>
<tr>
<td></td>
<td>• Charging 6hrs/day</td>
<td>• $218/yr</td>
<td>• Power Level: 1.4kW (12A)</td>
</tr>
<tr>
<td></td>
<td>• 5 days/week</td>
<td></td>
<td>• 4 miles added range/hr. of charging</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Electricity Cost: $0.10/kWh</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Installation Cost $0-$500</td>
</tr>
<tr>
<td></td>
<td>• 2,184 kWh/yr</td>
<td>• $0.000-$0.023/kWh $0-$50/yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $218/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Fleet charging</strong></td>
<td>• 1 light-duty vehicle</td>
<td>• 5,096 kWh/yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Charging 14hrs/night</td>
<td>• $510/yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 5 days/week</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 5,096 kWh/yr</td>
<td>• $0.000-$0.010/kWh $0-$50/yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $510/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 2, Single Port Scenarios</th>
<th>Annual Electricity Consumption &amp; Cost</th>
<th>Installation Cost Amortized Over 10yrs/kWh &amp; cost/yr.*</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Workplace charging</strong></td>
<td>• 2 light-duty vehicles</td>
<td>• 10,296 kWh/yr</td>
<td>• EVSE Type: Level 2 240 VAC</td>
</tr>
<tr>
<td></td>
<td>• Each charging 3hrs/day</td>
<td>• $1,030/yr</td>
<td>• EVSE Amperage: (30A)</td>
</tr>
<tr>
<td></td>
<td>• 5 days/week</td>
<td></td>
<td>• Vehicle Power Acceptance Rate: 6.6kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 20 miles added range/hr. of charging</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Electricity Cost: $0.10/kWh</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Installation Cost: $600-$12,700</td>
</tr>
<tr>
<td></td>
<td>• 10,296 kWh/yr</td>
<td>• $0.006-$0.123/kWh $60-$1,270/yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $1,030/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Public charging</strong></td>
<td>• 1 light-duty vehicles</td>
<td>• 6,864 kWh/yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Each charging 5hrs/day</td>
<td>• $686/yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 4 days/week</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 6,864 kWh/yr</td>
<td>• $0.009-$0.185/kWh $60-$1,270/yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $686/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Fleet charging</strong></td>
<td>• 2 medium-duty vehicles</td>
<td>• 17,160 kWh/yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Each charging 5hrs/night</td>
<td>• $1,716/yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 5 days/week</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 17,160 kWh/yr</td>
<td>• $0.003-$0.074/kWh $60-$1,270/yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $1,716/yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>DCFC, Single Port Scenario</strong></td>
<td>Annual Electricity Consumption &amp; Cost</td>
<td>Installation Cost Amortized Over 10yrs/kWh &amp; cost/yr.*</td>
<td>Assumptions</td>
</tr>
<tr>
<td><strong>Public charging</strong></td>
<td>• 2 light-duty vehicles</td>
<td>• 11,278 kWh/yr</td>
<td>• EVSE Type: DCFC 480 VDC</td>
</tr>
<tr>
<td></td>
<td>• Each charging 20 min/day</td>
<td>• $1,128/yr</td>
<td>• Power Level: 48kW (100A)</td>
</tr>
<tr>
<td></td>
<td>• 7 days/week</td>
<td></td>
<td>• 50 miles added range/20 min of charging</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Electricity Cost: $0.10/kWh</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Installation Cost: $4,000-$51,000</td>
</tr>
<tr>
<td></td>
<td>• 11,278 kWh/yr</td>
<td>• $0.035-$0.452/kWh $400-$5,100/yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• $1,128/yr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The installation cost amortized over 10yrs/kWh provides the cost per kWh that would need to be added to the electricity consumption rate in order to recoup the installation costs. This calculation assumes a 10 year lifespan for the EVSE and does not account for potential borrowing costs.*
Appendix D: State and Utility EVSE Incentives

These incentives were compiled from the Alternative Fuel Data on July 22, 2015 by Stacy Davis, Oak Ridge National Laboratory. This information accompanies Figure 10, the State EVSE Incentive map. For current incentive information, visit the Laws and Incentives database at [http://www.afdc.energy.gov/laws](http://www.afdc.energy.gov/laws).

### State EVSE Incentives as of July 22, 2015

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
<th>$ Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Tax credit for individuals for the installation of EVSE in a house or housing unit that they have built.</td>
<td>up to $75</td>
</tr>
<tr>
<td>CA</td>
<td>Loans to property owners for purchasing and installing EVSE.</td>
<td>not stated</td>
</tr>
<tr>
<td>CA</td>
<td>Small business loans up to $500,000 on the installation of EVSE; rebate of 50% of loan under certain conditions.</td>
<td>up to $250,000</td>
</tr>
<tr>
<td>CO</td>
<td>Grants from the Charge Ahead Colorado Program provide 80% of the cost of an EVSE to local governments, school districts; state/federal agencies; public transit agencies; private non-profit or for-profit corporations; landlords of multi-family apartment buildings; and owners associations of common interest communities.</td>
<td>up to single port Level 2 $3,260; multiple ports Level 2 $6,260; single port DC $13,000; multiple port DC $16,000</td>
</tr>
<tr>
<td>CT</td>
<td>Funding up to 100% of EVSE installation cost dependent on certain conditions.</td>
<td>up to $10,000</td>
</tr>
<tr>
<td>DC</td>
<td>Income tax credit of 50% of equipment and labor costs for the purchase and installation of EVSE (publicly available commercial or residential).</td>
<td>Commercial up to $10,000; Residential up to $1,000</td>
</tr>
<tr>
<td>DE</td>
<td>Rebate available for purchase of EVSE (commercial or residential).</td>
<td>$500</td>
</tr>
<tr>
<td>FL</td>
<td>Assistance with financing EVSE installation from local governments.</td>
<td>not stated</td>
</tr>
<tr>
<td>GA</td>
<td>Income tax credit of 10% for purchase or lease of EVSE.</td>
<td>up to $2,500</td>
</tr>
<tr>
<td>IL</td>
<td>Rebates available to offset cost of EVSE for governments, businesses, educational institutions, non-profits, and individuals.</td>
<td>up to $50,000</td>
</tr>
<tr>
<td>LA</td>
<td>Corporate or income tax credit for 10% to 25% of the project costs of state-certified green projects, such as capital infrastructure for advanced drivetrain vehicles.</td>
<td>up to $1 million</td>
</tr>
<tr>
<td>LA</td>
<td>Income tax credit up to 50% of the cost of alternative fueling equipment.</td>
<td>not stated</td>
</tr>
<tr>
<td>MA</td>
<td>Grants from the Massachusetts Electric Vehicle Incentive Program for 50% of the cost of Level 1 or 2 workplace EVSE.</td>
<td>up to $25,000</td>
</tr>
<tr>
<td>MA</td>
<td>Grants from the Massachusetts Electric Vehicle Incentive Program provide for the purchase or lease of Level 2 EVSE by local governments, universities, driving schools, and state agencies.</td>
<td>up to $13,500</td>
</tr>
<tr>
<td>MA</td>
<td>Grants from the Department of Energy Resources’ Clean Vehicle Project for public and private fleets to purchase alternative fuel infrastructure.</td>
<td>not stated</td>
</tr>
<tr>
<td>State</td>
<td>Description</td>
<td>$ Value</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>MD</td>
<td>Rebates available for governments, businesses, and individuals for the cost of acquiring and installing EVSE.</td>
<td>up to: Individual $900; Gov. or Bus. $5,000; Service Station $7,500</td>
</tr>
<tr>
<td>MD</td>
<td>Income tax credit of 20% for cost of EVSE.</td>
<td>up to $400</td>
</tr>
<tr>
<td>MS</td>
<td>Zero-interest loans for public school districts and municipalities to install fueling stations for alternative fuels.</td>
<td>up to $500,000</td>
</tr>
<tr>
<td>NC</td>
<td>Grant funding from the Clean Fuel Advanced Technology Project for fueling infrastructure related to emissions reduction.</td>
<td>not stated</td>
</tr>
<tr>
<td>NE</td>
<td>Low-cost loans through the Dollar and Energy Saving Loan Program for the construction or purchase of fueling station or equipment, up to $750,000.</td>
<td>not stated</td>
</tr>
<tr>
<td>NY</td>
<td>Income tax credit for 50% of EVSE.</td>
<td>up to $5,000</td>
</tr>
<tr>
<td>OH</td>
<td>Loans up to 80% of the cost for purchase and installation of fueling facilities for alternative fuels.</td>
<td>not stated</td>
</tr>
<tr>
<td>OK</td>
<td>Tax credit available for up to 75% of the cost of installing alternative fuel infrastructure.</td>
<td>not stated</td>
</tr>
<tr>
<td>OR</td>
<td>Tax credit of 25% of alternative fuel infrastructure purchase costs. A company that constructs the dwelling or a resident may claim the credit.</td>
<td>up to $750</td>
</tr>
<tr>
<td>OR</td>
<td>Tax credit for business owners of 35% of cost for alternative fuel infrastructure project.</td>
<td>not stated</td>
</tr>
<tr>
<td>OR</td>
<td>Low-interest loans for alternative fuel infrastructure projects.</td>
<td>not stated</td>
</tr>
<tr>
<td>TX</td>
<td>Grants from the Alternative Fueling Facilities Program provide for 50% of the cost of alternative fuel facilities.</td>
<td>up to $600,000</td>
</tr>
<tr>
<td>TX</td>
<td>Grants from the Emissions Reduction Incentive Grants Program provide for alternative fuel dispensing infrastructure.</td>
<td>not stated</td>
</tr>
<tr>
<td>UT</td>
<td>Grants from the Utah Clean Fuels and Vehicle Technology Grant and Loan Program provide for the cost of fueling equipment for public/private sector business and government vehicles.</td>
<td>not stated</td>
</tr>
<tr>
<td>WA</td>
<td>Leasehold excise tax exemption for public lands used for installing, maintaining, and operating PEV infrastructure.</td>
<td>not stated</td>
</tr>
<tr>
<td>WA</td>
<td>State sales and use taxes do not apply to labor and services installing, repairing, altering, or improving PEV infrastructure; those taxes do not apply to the sale of property used for PEV infrastructure.</td>
<td>not stated</td>
</tr>
<tr>
<td>WA</td>
<td>An additional 2% rate of return for a utility installing an EVSE for the benefit of ratepayers.</td>
<td>not stated</td>
</tr>
<tr>
<td>US Airports</td>
<td>The Zero Emissions Airport Vehicle and Infrastructure Pilot Program provides funding for public airports to install or modify fueling infrastructure to support zero emission vehicles.</td>
<td>not stated</td>
</tr>
<tr>
<td>State</td>
<td>Description</td>
<td>$ Value</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>AL</td>
<td>Alabama Power - Rebate for commercial customers installing EVSE.</td>
<td>$500</td>
</tr>
<tr>
<td>CA</td>
<td>Los Angeles Department of Water and Power - Rebates for Level 2 or DC fast charge EVSE (commercial or residents owning PEVs).</td>
<td>Commercial up to $15,000; Residential up to $750</td>
</tr>
<tr>
<td>CA</td>
<td>Glendale Water and Power - Rebate to first 100 single-family residential PEV owners to install a level 2 EVSE.</td>
<td>$200</td>
</tr>
<tr>
<td>FL</td>
<td>Orlando Utilities Commission - Rebate for the purchase and installation of commercial EVSE.</td>
<td>up to $750</td>
</tr>
<tr>
<td>GA</td>
<td>Georgia Water and Power - Rebate to business and residential customers installing a level 2 EVSE; Rebate for new home construction builders installing a dedicated circuit.</td>
<td>Residential $250; Business $500; New home construct $100</td>
</tr>
<tr>
<td>IN</td>
<td>NIPSCO - Credit to purchase and install residential EVSE.</td>
<td>up to $1,650</td>
</tr>
<tr>
<td>IN</td>
<td>NIPSCO - up to 50% of cost to install public EVSE.</td>
<td>up to $3,000</td>
</tr>
<tr>
<td>MI</td>
<td>Indiana-Michigan Power - Rebate to first 250 residential PEV owners/leasers installing level 2 EVSE with separate meter.</td>
<td>$2,500</td>
</tr>
<tr>
<td>TX</td>
<td>Austin Energy - Rebate of 50% of purchase cost for Level 2 EVSE for PEV owners.</td>
<td>up to $1,500</td>
</tr>
<tr>
<td>WA</td>
<td>Puget Sound Energy - Rebate to first 5,000 PEV owners for Level 2 EVSE.</td>
<td>$500</td>
</tr>
</tbody>
</table>
Appendix E: References

Note: All reference web links accessed as of October 8, 2015.


