Publications

Find publications about alternative transportation, including alternative fuels, advanced vehicles, and regulated fleets.

Search Results | 100 publications
Title Author Date Category
H2@Scale Program Multi-Party Cooperative Research and Development Agreement: California Hydrogen Infrastructure Research Consortium Task Sprik, S.; Buttner, W.; Koleva, M.; Onorato, S.; Peters, M.; Saur, G. 5/2/2022 Reports

National Renewable Energy Laboratory, Golden, Colorado

Many stakeholders are working on hydrogen and fuel cell products, markets, requirements, mandates, and policies. California has been leading the way for hydrogen infrastructure and fuel cell electric vehicle deployment. The advancements in California have identified many lessons learned for hydrogen infrastructure development, deployment, and operation. Other interested states and countries are using California’s experience as a model case, making success in California paramount to enabling market acceleration and uptake in the United States. To assist California in decisions and evaluations, as well as to verify solutions to problems impacting the industry, a hydrogen research consortium of California agency partners and national laboratories was organized. This report describes the work performed as part of this consortium between the National Renewable Energy Laboratory and California agency partners and the task outcomes. The tasks included hydrogen station data analysis, insights into medium and heavy-duty vehicles running on hydrogen, hydrogen contaminant detectors for use at hydrogen refueling stations, hydrogen nozzle freeze lock evaluation, hydrogen topics for integration into the California energy management strategy, and a technical assistance project that analyzed liquid hydrogen modeling for a hydrogen station capacity tool.

Hydrogen and the Global Energy Transition - Path to Sustainability and Adoption across All Economic Sectors Cheekatamarla, P 2/8/2024 Journal Articles & Abstracts

Oak Ridge National Laboratory, Oak Ridge, Tennessee

This article analyzes the role of hydrogen as a sustainable energy carrier in the global energy transition, providing an overview of current hydrogen technology and its applications across various industries, including transportation. Additionally, the article discusses the need for policy makers, industries, and researchers to collaborate to allow hydrogen technology to reach its full potential.

Road Map to a U.S. Hydrogen Economy 1/2/2023 Reports

Fuel Cell & Hydrogen Energy Association, Washington D.C.

Since 1969, America has remained a leader in fuel cell and hydrogen technology, commercializing a wide range of technologies that produce, deliver, store, and utilize hydrogen across applications and sectors. Today, the hydrogen industry as well as the US are at a crossroads as the country’s energy future is determined. Hydrogen is a unique energy carrier with applications across sectors, and its use in the United States could provide many benefits.

2022 Annual Evaluation of Fuel Cell Electric Vehicle Deployment and Hydrogen Fuel Station Network Development 9/1/2022 Reports

California Air Resources Board, Sacramento, California

California's Assembly Bill 8 requires the California Air Resources Board (ARB) to assess the size of the current and future fuel cell electric vehicle fleet annually, based on vehicle registrations with the Department of Motor Vehicles, auto manufacturer responses to ARB surveys of projected future sales, and current and future hydrogen fuel station locations and capacity. This information informs the state’s decisions for future funding of hydrogen fuel stations, including the number and location of stations as well as minimum technical requirements for those stations.

2019 Fuel Cell Technologies Market Report Dolan, C.; Gangi, J.; Homann, Q.; Fink, V.; Kopasz, J. 9/1/2020 Reports

Fuel Cell and Hydrogen Energy Association in Washington, District of Columbia; Argonne National Laboratory, Lemont, Illinois

This report examines global fuel cell and hydrogen trends during 2019, covering business and financial activities, federal programs, and aspects of the various market sectors for fuel cells which include transportation. The report also covers 2019 activities related to hydrogen production, power-to-gas, energy storage, and components used by fuel cell and hydrogen technologies.

Hydrogen Station Network Self-Sufficiency Analysis per Assembly Bill 8 10/1/2021 Reports

California Air Resources Board, Sacramento, California

Assembly Bill 8, 2013, asks the California Air Resources Board and the California Energy Commission to evaluate hydrogen fueling station development and operation against a standard of financial self-sufficiency. A self-sufficient network demonstrates the ability to continue operations and growth without further state financial support. This self-sufficiency study evaluates the economics of potential future scenarios for growth in California’s network of hydrogen fueling stations, assesses the amount of state support that could maintain network growth and operation until the network demonstrates self-sufficiency, and estimates the timing to achieve self-sufficiency.

Annual Evaluation of Fuel Cell Electric Vehicle Deployment & Hydrogen Fuel Station Network Development 9/1/2021 Reports

California Air Resources Board, Sacramento, California

California's Assembly Bill 8 requires the California Air Resources Board (ARB) to assess the size of the current and future fuel cell electric vehicle fleet annually, based on vehicle registrations with the Department of Motor Vehicles, auto manufacturer responses to ARB surveys of projected future sales, and current and future hydrogen fuel station locations and capacity. This information informs the state’s decisions for future funding of hydrogen fuel stations, including the number and location of stations as well as minimum technical requirements for those stations.

Retail Hydrogen Station Reliability Status and Advances Kurtz, J.; Sprik, S.; Peters, M.; Bradley, T.H. 1/21/2020 Journal Articles & Abstracts

National Renewable Energy Laboratory, Golden, Colorado

One of the most important emerging commercial markets for hydrogen is fuel cell-powered mobility including cars, trucks, and buses. These vehicles are refueled via a network of hydrogen fueling stations, with the highest number of U.S. stations being in California. The numbers of both fuel cell electric vehicles (FCEVs) and hydrogen stations have increased in the last two years, with anecdotal information from FCEV drivers indicating that station reliability is hurting the consumer acceptability of FCEV technologies. Therefore, this study benchmarks the current state of hydrogen station reliability in practice and presents on-going research that is investigating the failures that are contribute to hydrogen station reliability issues. This is accomplished with an analysis of operation, safety, and maintenance data from hydrogen stations and fuel cell electric vehicles to benchmark the maintenance and failure of hydrogen stations and their components. This analysis, of over 5,000 station maintenance events, presents the leading maintenance categories and failure rates, and is a prerequisite to the development of data-driven reliability improvement plans. We present a reliability growth analysis and on-going research into the root causes of failure for dispensers, a particularly failure-prone subsystem.

Notes:

This Reliability Engineering & System Safety article (106823) is copyrighted by Elsevier Ltd. and can be accessed through Science Direct.

Hydrogen Station Permitting Guidebook Brazil Vacin, G.; Eckerle, T.; Kashuba, M. 9/1/2020 Reports

California Governor’s Office of Business and Economic Development (GO-Biz), Sacramento, California

This guidebook is comprised of six parts and is intended to help station developers and local jurisdictions navigate and streamline the infrastructure development process. It reflects the latest best practices collected from stations developers and local jurisdictions with experience in the hydrogen stations development process.

Making Sense of Heavy-Duty Hydrogen Fuel Cell Tractors 12/1/2020 Reports

North American Council for Freight Efficiency, Washington, D.C.

Hydrogen fuel cells are proposed as a viable zero-emission alternative to today’s diesel engines. The technology is evolving rapidly for heavy-duty tractors hauling freight in dry van and refrigerated trailers. A handful of prototypes are in testing today in North America, while limited production units are entering commercial service in Europe. This report provides an unbiased view of the potential for hydrogen fuel cell tractors, identifying where and why they make sense in the mix of future zero-emission solutions.

Notes:

This copyrighted publication can be accessed through North American Council for Freight Efficiency’s website.

Joint Agency Staff Report on Assembly Bill 8: 2021 Annual Assessment of Time and Cost Needed to Attain 100 Hydrogen Refueling Stations in California Baronas, J.; Chen, B. 1/12/2021 Reports

California Energy Commission and California Air Resources Board, Sacramento, California

California has nearly 10,000 fuel cell electric vehicles (FCEVs) on its roads, and projections show more than 61,000 FCEVs by 2027. This report contains time and cost assessments for the network of publicly available hydrogen refueling stations to support the FCEV market under the California Energy Commission’s Clean Transportation Program.

Model Year 2024: Alternative Fuel and Advanced Technology Vehicles 1/1/2024 Toolkits & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

This document lists the model, vehicle type, engine size, and fuel economy of a variety of alternative fuel and advanced technology vehicles.

Comparison of Well-to-Wheels Energy Use and Emissions of a Hydrogen Fuel Cell Electric Vehicle Relative to a Conventional Gasoline-Powered Internal Combustion Engine Vehicle Liu, X.; Reddi, K.; Elgowainy, A.; Lohse-Busch, H.; Wang, M.; Rustagi , N. 11/26/2019 Journal Articles & Abstracts

Argonne National Laboratory, Lemont, Illinois; U.S. Department of Energy, Washington, D.C.

The operation of fuel cell electric vehicles (FCEVs) is more efficient than that of gasoline conventional internal combustion engine (ICE) vehicles, and produces zero tailpipe pollutant emissions. However, hydrogen production, transportation, and fueling are more energy- and emissions-intensive compared to gasoline. This report provides a well-to-wheels (WTW) energy use and emissions analysis to compare a FCEV (Toyota Mirai) with a gasoline conventional ICE vehicle (Mazda 3).

Notes:

This International Journal of Hydrogen Energy article (Vol. 45, Issue 1, (2020): pp. 972-983) is copyrighted by Elsevier Ltd. and can be accessed through Science Direct.

Model Year 2023: Alternative Fuel and Advanced Technology Vehicles 1/1/2023 Toolkits & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

This document lists the model, vehicle type, engine size, and fuel economy of a variety of alternative fuel and advanced technology vehicles.

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2020 Eudy, L.; Post, M. 3/1/2021 Reports

National Renewable Energy Laboratory, Golden, Colorado

This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory. This annual status report combines results from all FCEB demonstrations, tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. The data from these early FCEB deployments funded by the U.S. Department of Transportation, state agencies, and the private sector help to guide future early-stage research and development. The 2020 summary results primarily focus on the most recent year from January 2020 through July 2020.

Hydrogen Storage 3/7/2017 Toolkits & Fact Sheets

U.S. Department of Energy, Washington, D.C.

This fact sheet, produced by the Fuel Cell Technologies Office, describes hydrogen storage, including near-term hydrogen storage solutions and research needs and long-term research directions.

Hydrogen and Fuel Cell Technologies Office: Hydrogen Production 9/1/2014 Toolkits & Fact Sheets

U.S. Department of Energy, Fuel Cell Technologies Office, Washington, D.C.

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as "quick facts" about hydrogen energy resources and production technologies.

State of the States: Fuel Cells in America 2017, 8th Edition Curtin, S.; Gangi, J. 5/23/2018 Reports

Fuel Cell and Hydrogen Energy Association, Washington, D.C.

This January 2018 report, the eighth in a series, provides a comprehensive analysis of state activities supporting fuel cell and hydrogen technology, including profiles of all 50 states with a catalog of recent installations, policies, funding, and deployments around the country.

Best Practices in Hydrogen Fueling and Maintenance Facilities for Transit Agencies 3/1/2017 Reports

CALSTART, Pasadena, California

This best practices guide helps transit agencies plan and understand the parameters for fueling, the guidelines for safety, the requirements of maintenance facilities, and the economics of hydrogen fueling and maintenance facilities.

Clean Cities and Communities Overview 4/26/2024 Toolkits & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

Clean Cities and Communities is a U.S. Department of Energy (DOE) partnership to advance clean transportation nationwide. More than 75 DOE-designated Clean Cities and Communities coalitions work locally in urban, suburban, and rural communities to strengthen the nation's environment, energy security, and economic prosperity. As partners with DOE's Vehicle Technologies Office, coalitions work to deploy affordable, efficient, and clean transportation; energy efficient mobility systems; and fuel-saving technologies and practices.

Clean Cities Coalitions 2022 Activity Report Singer, M.; Johnson, C.; Wilson, A. 1/29/2024 Reports

National Renewable Energy Laboratory, Golden, Colorado

The U.S. Department of Energy’s (DOE’s) Vehicle Technologies Office (VTO) works with local Clean Cities coalitions across the country as part of its Technology Integration Program. These efforts help businesses and consumers make smarter and more informed transportation energy choices that can save energy, lower costs, provide resilience through fuel diversification, and reduce emissions. This report summarizes the success and impact of coalition activities based on data and information provided in their annual reports.

A Meta-Study of Purchase Costs for Zero-Emission Trucks Sharpe, B.; Basma, H. 2/1/2022 Reports

International Council on Clean Transportation, Washington, D.C.

This study reviews recent literature on current and projected battery-electric and hydrogen fuel cell tractor truck costs. In addition, this study provides information about the costs of key components for zero-emission trucks, including the battery pack, motor, and energy storage systems. Note: This copyrighted publication can be accessed through the International Council on Clean Transportation website.

Notes:

This copyrighted publication can be accessed on the International Council on Clean Transportation's website.

Fuel Cell Electric Trucks: A Vision for Freight Movement in California and Beyond 7/1/2021 Reports

California Fuel Cell Partnership, West Sacramento, California

The California Fuel Cell Partnership represents public entities and private global companies with vested interests in both battery electric and hydrogen fuel cell electric technologies. This document presents the California Fuel Cell Partnership shared vision of the fundamental role of fuel cell electric trucks in the complete transition of California’s freight movement sector to zero-emission. While the insights shared are applicable to many vehicle types, this document focuses on the largest and highest-priority, on-road freight vehicle: the Class 8 tractor.

Clean Cities Coalitions 2021 Activity Report Singer, M.; Johnson, C.; Wilson, A. 1/24/2023 Reports

National Renewable Energy Laboratory, Golden, Colorado

The U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy’s Vehicle Technologies Office (VTO) works with local Clean Cities coalitions across the country as part of its Technology Integration Program. These efforts help businesses and consumers make smarter and more informed transportation energy choices that can save energy, lower costs, provide resilience through fuel diversification, and reduce air emissions. This report summarizes the success and impact of coalition activities based on data and information provided in their annual progress reports.

Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles 9/9/2014 Reports

American Gas Association, Washington, DC; Toyota Motor Sales, Torrance, California; Sandia National Laboratories, Livermore, California

On September 9, 2014, Sandia National Laboratories, American Gas Association, and Toyota, in support of the U.S. Department of Energy's Fuel Cell Technologies and Vehicle Technologies Offices, convened stakeholders across the hydrogen and natural gas communities to consider opportunities and challenges at the intersection of their development as alternative transportation fuels. Although natural gas and hydrogen have an obvious intersection - natural gas is the feedstock for 95% of the hydrogen produced in the U.S. - little attention has been given to how these fuels can evolve in the context of each other. This workshop explored infrastructure requirements, regional trends, and market opportunities at the intersection of hydrogen fuel cell and natural gas use for on road transportation. The goal of the workshop was to provide background and context for thinking through the dynamic evolution of these two transportation options in tandem, and to identify opportunities that can support the synergistic development of both fuels.

AFLEET Assesses Vehicle, Fuel, and Infrastructure Impacts 12/13/2023 Toolkits & Fact Sheets

Argonne National Laboratory, Lemony, Illinois

AFLEET is a free tool from the U.S. Department of Energy (DOE) that fleet managers can use to quantify the environmental and economic impacts of new fuels and vehicle technologies. The AFLEET fact sheet explains how the tool works and how to access it.

Simulation-Based Assessment of Energy Consumption of Alternative Powertrains in Agricultural Tractors Lajunen, A; Kivekas, K; Freyermuth, V; Vijayagopal, R; Kim, N 2/27/2024 Journal Articles & Abstracts

University of Helsinki, Helsinki, Finland; Argonne National Laboratory, Lemont, Illinois

This report developed simulation models for conventional, parallel hybrid electric, series hybrid electric, fuel cell hybrid, and battery electric powertrain technologies for agricultural tractors, analyzing the potential energy efficiency and emissions benefits as well as technical challenges for implementing the vehicles. The study showed that both the battery electric and fuel cell hybrid tractors have higher potential to reduce energy consumption and emissions, but currently have inherent technical challenges, while the parallel hybrid and series hybrid powertrain tractors have varying energy efficiency benefits depending on the tractor size and operating cycle conditions.

Road to Zero: Research and Industry Perspectives on Zero-Emission Commercial Vehicles Muratori, M; Borlaug, B; Ledna, C; Jadun, P; Kailas, A 5/19/2023 Reports

National Renewable Energy Laboratory, Golden, Colorado; Volvo Group North America, Washington, District of Columbia

Medium-and heavy-duty vehicles comprise only a small fraction of on-road vehicles, yet disproportionately contribute to greenhouse gas emissions. This report provides an overview of the status, opportunities, challenges, and uncertainties for commercial zero-emission vehicles (ZEVs). A bright outlook for ZEVs is identified, and the report discusses remaining ZEV barriers and uncertainties around fleet decisions and changes to vehicle operation, infrastructure, manufacturing, and future fuel and technology trends that can be informed through analysis.

Fuel Properties Comparison Chart Putzig, M.; Gonzalez, J.; Moriarty, K.; Brown, A.; Rahill, M. 3/20/2024 Toolkits & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

This chart compares the physical fuel properties and considerations associated with gasoline/E10, low sulfur diesel, biodiesel, renewable diesel, propane, compressed natural gas, liquefied natural gas, ethanol, methanol, hydrogen, and electricity for use as vehicle fuels.

Transportation Energy Data Book: Edition 40 Davis, S.C.; Boundy, R.G. 2/1/2022 Books & Chapters

Oak Ridge National Laboratory, Oak Ridge, Tennessee; Roltek, Inc., Clinton, Tennessee

The Transportation Energy Data Book: Edition 40 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available via the Internet (tedb.ornl.gov).

Clean Cities Coalitions 2019 Activity Report Singer, M.; Johnson, C. 5/6/2021 Reports

National Renewable Energy Laboratory, Golden, Colorado

Clean Cities coalition activities resulted in an energy use impact (EUI) of over 1 billion gasoline-gallons equivalent (GGE), comprised of net alternative fuels used and energy savings from efficiency projects, in 2019. Participation in vehicle and infrastructure development projects remained strong, as did alternative fuel use and resulting overall EUI. Clean Cities coalition activities reduce emissions as they impact energy use. Coalition-reported activities prevented nearly 5 million carbon dioxide-equivalent tons of emissions (only greenhouse gas [GHG] emissions are reported here; criteria pollutants and other emissions are not included in this report). Coalitions were successful in securing project grant awards from numerous (non-DOE) outside sources. For other Federal, State, and local agencies and private sector foundations, see funding section on page 24. The 82 project grant awards in 2019 generated $225 million in funds from coalition members and project partners along with $9.5 million in DOE grant funds. Coalitions also collected $1.2 million in stakeholder dues and $1.6 million in operational funds from host organizations. In macro terms, this supplemental funding represents nearly a 6:1 leveraging of the $38 million that was included in the VTO Technology Integration budget in Fiscal Year 2019. Clean Cities coordinators spent nearly 136,000 hours pursuing their coalitions' goals in 2019. The average coordinator is quite experienced and has held his or her position for at least eight years. Coordinators logged more than 3,525 outreach, education, and training activities in 2019, which reached an estimated 23 million people.

Clean Cities Coalitions 2020 Activity Report Singer, M.; Johnson, C. 12/29/2021 Reports

National Renewable Energy Laboratory, Golden, Colorado

Clean Cities coalition activities resulted in an EUI of nearly 1 billion GGE, comprised of net alternative fuels used and energy savings from efficiency projects, in 2020. Clean Cities coalition and stakeholder participation in vehicle and infrastructure development projects remained strong, although transportation activity and resulting EUI decreased in 2020 due to the COVID 19 pandemic. Coalition-reported activities prevented nearly 5 million carbon dioxide-equivalent tons of emissions (only GHG emissions are reported here; criteria pollutants and other emissions are not included in this report). The GHG benefits increased in 2020 despite a decrease in EUI because coalitions focused more on technologies with higher GHG benefits per GGE reduced and because the lifecycle of many alternative fuels such as electricity or biofuels is becoming less carbon intense. Coalitions were successful in securing project grant awards from numerous outside (non-DOE) sources. The 90 project grant awards in 2020 generated $151 million in funds from coalition members and project partners in addition to $12.8 million in DOE grant funds. Coalitions also collected $1.1 million in stakeholder dues and $3.1 million in operational funds from host organizations. In macro terms, this non-DOE supplemental funding represents a 4:1 leveraging of the $38 million that was included in the VTO Technology Integration budget in 2020. Clean Cities coordinators spent nearly 135,700 hours pursuing their coalitions’ goals in 2020. The average coordinator is quite experienced and has held the coordinator position for nearly eight years. Coordinators logged more than 3,290 outreach, education, and training activities in 2020, which reached an estimated 31 million people. Activities that reached underserved communities were tracked for the first time in 2020 and accounted for 17% of all activities.

Infrastructure to Support a 100% Zero-Emission Tractor-Trailer Fleet in the United States by 2040 Minjares, R.; Rodríguez, F.; Sen, A.; Braun, C. 9/14/2021 Reports

International Council on Clean Transportation, Washington, D.C.

This analysis estimates the number of charging points and hydrogen fueling stations needed to enable the transition to 100% sales of zero-emission Class 7 and Class 8 tractor-trailers by 2040 in the United States.

Notes:

This copyrighted publication can be accessed on The International Council on Clean Transportation's website.

Model Year 2022: Alternative Fuel and Advanced Technology Vehicles 1/1/2022 Toolkits & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

This document lists the model, vehicle type, engine size, and fuel economy of a variety of alternative fuel and advanced technology vehicles.

Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure Greene, D.L.; Duleep , G. 7/1/2013 Reports

Oak Ridge National Laboratory, Oak Ridge, Tennessee; HD Systems, Washington, DC

Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: Fourth Quarter 2022 Brown, A.; Cappellucci, J.; White, E.; Heinrich, A.; Cost, E. 5/16/2023 Reports

National Renewable Energy Laboratory, Golden, Colorado; ICF, Washington, D.C.

The U.S. Department of Energy's Alternative Fueling Station Locator contains information on public and private nonresidential alternative fueling stations in the United States and Canada and currently tracks ethanol (E85), biodiesel, compressed natural gas, electric vehicle (EV) charging, hydrogen, liquefied natural gas, and propane stations. Of these fuels, EV charging continues to experience rapidly changing technology and growing infrastructure. This report provides a snapshot of the state of EV charging infrastructure in the United States in the fourth calendar quarter of 2022 (Q4). Using data from the Station Locator, this report breaks down the growth of public and private charging infrastructure by charging level, network, and location. Additionally, this report measures the current state of charging infrastructure compared with two different 2030 infrastructure requirement scenarios. This information is intended to help transportation planners, policymakers, researchers, infrastructure developers, and others understand the rapidly changing landscape of EV charging infrastructure. This is the twelfth report in a series.

Fuel Cell Electric Vehicle Driving and Fueling Behavior Kurtz, J.; Sprik, S.; Saur, G.; Onorato, S. 3/6/2019 Reports

National Renewable Energy Laboratory, Golden, Colorado

The objectives of this project are to validate hydrogen fuel cell electric vehicles in real-world settings and to identify the current status and evolution of the technology. The analysis objectively assesses progress toward targets and market needs defined by the U.S. Department of Energy and stakeholders, provides feedback to hydrogen research and development, and publishes results for key stakeholder use and investment decisions. Fiscal year 2018 objectives focused on analysis and reporting of fuel cell electric vehicle driving range, fuel economy, drive and fill behaviors, durability, fill performance, and fuel cell performance. This report specifically addresses the topics of driving range, fuel economy, drive and fill behaviors, and fill performance.

On-Road Fuel Cell Electric Vehicles Evaluation: Overview Kurtz, J.; Sprik, S.; Saur. G.; Onorato, S. 3/14/2019 Reports

National Renewable Energy Laboratory, Golden, Colorado

This report presents an overview of an evaluation of on-road fuel cell electric vehicles (FCEVs) by the National Renewable Energy Laboratory (NREL). The project addressed the need for current, on-road FCEV data and sought to validate improved performance and longer durability from comprehensive sets of early FCEVs, including early market vehicles. This report provides an overview of the evaluation project and partners, describes NREL's evaluation approach, and presents a summary of the results. Detailed results for durability, fuel economy, deployment and driving behavior, and specifications are published in separate reports.

Model Year 2021: Alternative Fuel and Advanced Technology Vehicles 1/1/2021 Toolkits & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

This document lists the model, vehicle type, engine size, and fuel economy of a variety of alternative fuel and advanced technology vehicles.

Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: Third Quarter 2022 Brown, A.; Cappellucci, J.; White, E.; Heinrich, A.; Cost, E. 3/9/2023 Reports

National Renewable Energy Laboratory, Golden, Colorado; ICF, Washington, D.C.

The U.S. Department of Energy's Alternative Fueling Station Locator contains information on public and private nonresidential alternative fueling stations in the United States and Canada and currently tracks ethanol (E85), biodiesel, compressed natural gas, electric vehicle (EV) charging, hydrogen, liquefied natural gas, and propane stations. Of these fuels, EV charging continues to experience rapidly changing technology and growing infrastructure. This report provides a snapshot of the state of EV charging infrastructure in the United States in the third calendar quarter of 2022 (Q3). Using data from the Station Locator, this report breaks down the growth of public and private charging infrastructure by charging level, network, and location. Additionally, this report measures the current state of charging infrastructure compared with two different 2030 infrastructure requirement scenarios. This information is intended to help transportation planners, policymakers, researchers, infrastructure developers, and others understand the rapidly changing landscape of EV charging infrastructure. This is the eleventh report in a series.

Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: Fourth Quarter 2021 Brown, A.; Schayowitz, A.; White, E. 5/4/2022 Reports

National Renewable Energy Laboratory, Golden, Colorado; ICF, Washington, D.C.

The U.S. Department of Energy’s Alternative Fueling Station Locator contains information on public and private nonresidential alternative fueling stations in the United States and Canada and currently tracks ethanol (E85), biodiesel, compressed natural gas, electric vehicle (EV) charging, hydrogen, liquefied natural gas, and propane stations. Of these fuels, EV charging continues to experience rapidly changing technology and growing infrastructure. This report provides a snapshot of the state of EV charging infrastructure in the United States in the fourth calendar quarter of 2021 (Q4). Using data from the Station Locator, this report breaks down the growth of public and private charging infrastructure by charging level, network, and location. Additionally, this report measures the current state of charging infrastructure compared with two different 2030 infrastructure requirement scenarios. This information is intended to help transportation planners, policymakers, researchers, infrastructure developers, and others understand the rapidly changing landscape of EV charging infrastructure. This is the eighth report in a series.

Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: First Quarter 2022 Brown, A.; Cappellucci, J.; Schayowitz, A.; White, E.; Heinrich, A.; Cost, E. 9/21/2022 Reports

National Renewable Energy Laboratory, Golden, Colorado; ICF, Washington, D.C.

The U.S. Department of Energy’s Alternative Fueling Station Locator contains information on public and private nonresidential alternative fueling stations in the United States and Canada and currently tracks ethanol (E85), biodiesel, compressed natural gas, electric vehicle (EV) charging, hydrogen, liquefied natural gas, and propane stations. Of these fuels, EV charging continues to experience rapidly changing technology and growing infrastructure. This report provides a snapshot of the state of EV charging infrastructure in the United States in the first calendar quarter of 2022 (Q1). Using data from the Station Locator, this report breaks down the growth of public and private charging infrastructure by charging level, network, and location. Additionally, this report measures the current state of charging infrastructure compared with two different 2030 infrastructure requirement scenarios. This information is intended to help transportation planners, policymakers, researchers, infrastructure developers, and others understand the rapidly changing landscape of EV charging infrastructure. This is the ninth report in a series.

Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: Second Quarter 2022 Brown, A.; Cappellucci, J.; White, E.; Heinrich, A.; Cost, E. 12/23/2022 Reports

National Renewable Energy Laboratory, Golden, Colorado; ICF, Washington, D.C.

The U.S. Department of Energy's Alternative Fueling Station Locator contains information on public and private nonresidential alternative fueling stations in the United States and Canada and currently tracks ethanol (E85), biodiesel, compressed natural gas, electric vehicle (EV) charging, hydrogen, liquefied natural gas, and propane stations. Of these fuels, EV charging continues to experience rapidly changing technology and growing infrastructure. This report provides a snapshot of the state of EV charging infrastructure in the United States in the second calendar quarter of 2022 (Q2). Using data from the Station Locator, this report breaks down the growth of public and private charging infrastructure by charging level, network, and location. Additionally, this report measures the current state of charging infrastructure compared with two different 2030 infrastructure requirement scenarios. This information is intended to help transportation planners, policymakers, researchers, infrastructure developers, and others understand the rapidly changing landscape of EV charging infrastructure. This is the tenth report in a series.

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Sixth Report Eudy, L.; Post, M.; Jeffers, M. 9/1/2017 Reports

National Renewable Energy Laboratory, Golden, Colorado

This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 13 advanced-design fuel cell buses and two hydrogen fueling stations. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. NREL has published five previous reports describing operation of these buses. This report presents new and updated results covering data from January 2016 through December 2016.

Clean Cities Coalitions 2017 Activity Report Johnson, C.; Singer, M. 5/14/2019 Reports

National Renewable Energy Laboratory, Golden, Colorado

The U.S. Department of Energy's (DOE's) national network of Clean Cities Coalitions advance the nation's economic, environmental, and energy security by supporting local actions to promote the use of domestic fuels within transportation. The nearly 100 Clean Cities coalitions, whose territory covers 80% of the U.S. population, bring together stakeholders in the public and private sectors to use alternative and renewable fuels, idle-reduction (IR) measures, fuel economy improvements, and new transportation technologies as they emerge. To ensure success, coalitions leverage a robust set of expert resources and tools provided by national laboratories and DOE. Each year, Clean Cities coordinators submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online tool that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels; use of alternative fuel vehicles (AFVs), plug-in electric vehicles (PEVs), and hybrid electric vehicles (HEVs); IR initiatives; fuel economy improvement activities; and programs to reduce vehicle miles traveled (VMT). NREL analyzes the submitted data to determine how broadly energy use in the U.S. has shifted due to coalition activities, which are summarized in this report.

Clean Cities Coalitions 2018 Activity Report Singer, M.; Johnson, C. 12/27/2019 Reports

National Renewable Energy Laboratory, Golden, Colorado

Clean Cities coalition activities resulted in an energy use impact (EUI) of over 1 billion gasoline-gallons equivalent (GGE), comprised of net alternative fuels used and energy savings from efficiency projects, in 2018. Participation in vehicle and infrastructure development projects remained strong, as did alternative fuel use and resulting overall EUI. Clean Cities coalition activities reduce emissions as they impact energy use. Coalition-reported activities prevented 5 million carbon dioxide-equivalent tons of emissions (only greenhouse gas [GHG] emissions are reported here; criteria pollutants and other emissions are not included in this report). Coalitions were successful in securing project grant awards from numerous (non-DOE) outside sources. For other Federal, State, and local agencies and private sector foundations, see funding section on page 25. The 84 project grant awards in 2018 generated $251 million in funds from coalition members and project partners along with $1.9 million in DOE grant funds. Coalitions also collected $1.1 million in stakeholder dues and $2.9 million in operational funds from host organizations. In macro terms, this supplemental funding represents nearly a 7:1 leveraging of the $37.8 million that was included in the VTO Technology Integration budget in Fiscal Year 2018. Clean Cities coordinators spent nearly 121,000 hours pursuing their coalitions' goals in 2018. The average coordinator is quite experienced and has held his or her position for at least eight years. Coordinators logged more than 3,805 outreach, education, and training activities in 2018, which reached an estimated 35 million people.

Model Year 2020: Alternative Fuel and Advanced Technology Vehicles 1/1/2020 Toolkits & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

This document lists the model, vehicle type, engine size, and fuel economy of a variety of alternative fuel and advanced technology vehicles.

Hydrogen Fuel Cell Electric Vehicles 2/1/2011 Toolkits & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

Hydrogen fuel cell electric vehicles can play an important role in the portfolio of sustainable transportation fuel options, reduce dependence on imported oil and enable global economic leadership for America.

Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: Second Quarter 2021 Brown, A.; Levene, J.; Schayowitz, A.; Klotz, E. 12/16/2021 Reports

National Renewable Energy Laboratory, Golden, Colorado; ICF, Washington, D.C.

The U.S. Department of Energy’s Alternative Fueling Station Locator contains information on public and private non-residential alternative fueling stations in the United States and Canada and currently tracks ethanol (E85), biodiesel, compressed natural gas, electric vehicle (EV) charging, hydrogen, liquefied natural gas, and propane stations. Of these fuels, EV charging continues to experience rapidly changing technology and growing infrastructure. This report provides a snapshot of the state of EV charging infrastructure in the United States in the second calendar quarter of 2021. Using data from the Station Locator, this report breaks down the growth of public and private charging infrastructure by charging level, network, and location. Additionally, this report measures the current state of charging infrastructure compared with the amount projected to meet charging demand by 2030. This information is intended to help transportation planners, policymakers, researchers, infrastructure developers, and others understand the rapidly changing landscape for EV charging.

Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: First Quarter 2021 Brown, A.; Schayowitz, A.; Klotz, E. 9/10/2021 Reports

National Renewable Energy Laboratory, Golden, Colorado; ICF, Washington, D.C.

The U.S. Department of Energy’s Alternative Fueling Station Locator contains information on public and private non-residential alternative fueling stations in the United States and Canada and currently tracks ethanol (E85), biodiesel, compressed natural gas, electric vehicle (EV) charging, hydrogen, liquefied natural gas, and propane stations. Of these fuels, EV charging continues to experience rapidly changing technology and growing infrastructure. This report provides a snapshot of the state of EV charging infrastructure in the United States in the first calendar quarter of 2021. Using data from the Station Locator, this report breaks down the growth of public and private charging infrastructure by charging level, network, and location. Additionally, this report measures the current state of charging infrastructure compared with the amount projected to meet charging demand by 2030. This information is intended to help transportation planners, policymakers, researchers, infrastructure developers, and others understand the rapidly changing landscape for EV charging.

Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: Third Quarter 2020 Brown, A.; Lommele, S.; Schayowitz, A.; Klotz, E. 5/1/2021 Reports

National Renewable Energy Laboratory, Golden, Colorado; ICF, Washington, D.C.

The U.S. Department of Energy’s Alternative Fueling Station Locator contains information on public and private non-residential alternative fueling stations in the United States and Canada and currently tracks ethanol (E85), biodiesel, compressed natural gas, electric vehicle (EV) charging, hydrogen, liquefied natural gas, and propane stations. Of these fuels, EV charging continues to experience rapidly changing technology and growing infrastructure. This report provides a snapshot of the state of EV charging infrastructure in the United States in the third calendar quarter of 2020. Using data from the Station Locator, this report breaks down the growth of public and private charging infrastructure by charging level, network, and location. Additionally, this report measures the current state of charging infrastructure compared with the amount projected to meet charging demand by 2030. This information is intended to help transportation planners, policymakers, researchers, infrastructure developers, and others understand the rapidly changing landscape for EV charging.

Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: Fourth Quarter 2020 Brown, A.; Lommele, S.; Schayowitz, A.; Klotz, E. 6/1/2021 Reports

National Renewable Energy Laboratory, Golden, Colorado; ICF, Washington, D.C.

The U.S. Department of Energy’s Alternative Fueling Station Locator contains information on public and private non-residential alternative fueling stations in the United States and Canada and currently tracks ethanol (E85), biodiesel, compressed natural gas, electric vehicle (EV) charging, hydrogen, liquefied natural gas, and propane stations. Of these fuels, EV charging continues to experience rapidly changing technology and growing infrastructure. This report provides a snapshot of the state of EV charging infrastructure in the United States in the fourth calendar quarter of 2020. Using data from the Station Locator, this report breaks down the growth of public and private charging infrastructure by charging level, network, and location. Additionally, this report measures the current state of charging infrastructure compared with the amount projected to meet charging demand by 2030. This information is intended to help transportation planners, policymakers, researchers, infrastructure developers, and others understand the rapidly changing landscape for EV charging.

Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: Third Quarter 2021 Brown, A.; Schayowitz, A.; Klotz, E. 3/10/2022 Reports

National Renewable Energy Laboratory, Golden, Colorado; ICF, Washington, D.C.

The U.S. Department of Energy’s Alternative Fueling Station Locator contains information on public and private non-residential alternative fueling stations in the United States and Canada and currently tracks ethanol (E85), biodiesel, compressed natural gas, electric vehicle (EV) charging, hydrogen, liquefied natural gas, and propane stations. Of these fuels, EV charging continues to experience rapidly changing technology and growing infrastructure. This report provides a snapshot of the state of EV charging infrastructure in the United States in the third calendar quarter of 2021. Using data from the Station Locator, this report breaks down the growth of public and private charging infrastructure by charging level, network, and location. Additionally, this report measures the current state of charging infrastructure compared with the amount projected to meet charging demand by 2030. This information is intended to help transportation planners, policymakers, researchers, infrastructure developers, and others understand the rapidly changing landscape for EV charging.

Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator Brown, A.; Lommele, S.; Schayowitz, A.; Klotz, E. 6/1/2021 Reports

National Renewable Energy Laboratory, Golden, Colorado; ICF

The U.S. Department of Energy's Alternative Fueling Station Locator contains information on public and private non-residential alternative fueling stations in the United States and Canada and currently tracks ethanol (E85), biodiesel, compressed natural gas, electric vehicle (EV) charging, hydrogen, liquefied natural gas, and propane stations. Of these fuels, EV charging continues to experience rapidly changing technology and growing infrastructure. This report provides a snapshot of the state of EV charging infrastructure in the United States. Using data from the Station Locator, this report breaks down the growth of public and private charging infrastructure by charging level, network, and location. This information is intended to help transportation planners, policymakers, researchers, infrastructure developers, and others understand the rapidly changing landscape for EV charging.

2016 Vehicle Technologies Market Report Davis, S.C.; Williams, S.E.; Boundy, R.G.; Moore, S. 6/23/2017 Reports

Oak Ridge National Laboratory, Oak Ridge, Tennessee; Roltek, Inc., Clinton, Tennessee

The 2016 Vehicle Technologies Market Report is the eighth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy's (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies.

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Fifth Report Eudy, L.; Post, M.; Jeffers, M. 6/1/2016 Reports

National Renewable Energy Laboratory, Golden, Colorado

This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 13 advanced-design fuel cell buses and two hydrogen fueling stations. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. NREL has published four previous reports describing operation of these buses. This report presents new and updated results covering data from January 2015 through December 2015.

Model Year 2018: Alternative Fuel and Advanced Technology Vehicles 8/7/2018 Toolkits & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

The fact sheet details the model, vehicle type, emission class, transmission type/speeds, engine size, and fuel economy of a variety of flexible fuel vehicles, hybrid electric vehicles, all-electric, and extended range electric vehicles, as well as CNG and propane vehicles.

Clean Cities Coalitions 2016 Activity Report Johnson, C.; Singer, M. 10/10/2018 Reports

National Renewable Energy Laboratory, Golden, Colorado

The U.S. Department of Energy's (DOE's) national network of Clean Cities Coalitions advance the nation's economic, environmental, and energy security by supporting local actions to promote the use of domestic fuels within transportation. The nearly 100 Clean Cities coalitions, whose territory covers 80% of the U.S. population, bring together stakeholders in the public and private sectors to use alternative and renewable fuels, idle-reduction (IR) measures, fuel economy improvements, and new transportation technologies as they emerge. To ensure success, coalitions leverage a robust set of expert resources and tools provided by national laboratories and DOE. Each year, Clean Cities coordinators submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online tool that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels; use of alternative fuel vehicles (AFVs), plug-in electric vehicles (PEVs), and hybrid electric vehicles (HEVs); IR initiatives; fuel economy improvement activities; and programs to reduce vehicle miles traveled (VMT). NREL analyzes the submitted data to determine how broadly energy use in the U.S. has shifted due to coalition activities, which are summarized in this report.

Model Year 2019: Alternative Fuel and Advanced Technology Vehicles 1/1/2019 Toolkits & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

This document lists the model, vehicle type, engine size, and fuel economy of a variety of alternative fuel and advanced technology vehicles.

Technology Maintenance Readiness Guide for Zero-Emission Buses 1/10/2019 Toolkits & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

Transit agencies all over the United States are deploying zero-emission buses (ZEBs), including battery electric buses and fuel cell electric buses. Air quality is the primary driver for adopting ZEBs, especially in states where legislation has been passed to regulate vehicle emissions. The U.S. Department of Energy, through its National Renewable Energy Laboratory (NREL), tracks the progress of these advanced technologies as they are being developed and demonstrated. NREL works with transit agencies and their manufacturing partners to conduct independent third-party evaluations to validate performance under real-world service and report on the status of the technologies toward entering the market. The results are intended to help transit agencies understand the technology status and make informed purchase decisions.

The Zero Emission Vehicle Regulation 8/24/2018 Toolkits & Fact Sheets

California Air Resources Board, Sacramento, California

This fact sheet provides an overview of California’s zero-emission vehicle (ZEV) regulation, which is designed to achieve the state’s long-term emission reduction goals by requiring manufacturers to offer for sale specific numbers of the very cleanest cars available. The ZEV regulation has been adopted by other states.

Alternative Fuels Data Center 12/4/2019 Toolkits & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

The Alternative Fuels Data Center (AFDC) provides a wealth of information and data on alternative and renewable fuels, advanced vehicles, fuel-saving strategies, and emerging transportation technologies. The site features a number of interactive tools, calculators, and mapping applications to aid in the implementation of these fuels, vehicles, and strategies. The AFDC functions as a dynamic online hub, enabling thousands of stakeholders in the transportation system to interact with one another.

Hydrogen Safety, Codes, and Standards 2/1/2011 Toolkits & Fact Sheets

U.S. Department of Energy, Energy Efficiency & Renewable Energy, Washington, D.C.

Hydrogen and fuel cell technologies are poised to play an integral role in our energy future. This publication covers hydrogen safety facts, research, and codes and standards to safely build, maintain, and operate hydrogen applications and fuel cell systems.

Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: First Quarter 2020 Brown, A.; Lommele, S.; Schayowitz, A.; Klotz, E. 8/28/2020 Reports

National Renewable Energy Laboratory, Golden, Colorado; ICF

The U.S. Department of Energy’s Alternative Fueling Station Locator contains information on public and private non-residential alternative fueling stations in the United States and Canada and currently tracks ethanol (E85), biodiesel, compressed natural gas, electric vehicle (EV) charging, hydrogen, liquefied natural gas, and propane stations. Of these fuels, EV charging continues to experience rapidly changing technology and growing infrastructure. This report provides a snapshot of the state of EV charging infrastructure in the United States in the first calendar quarter of 2020 (Q1). Using data from the Station Locator, this report breaks down the growth of public and private charging infrastructure by charging level, network, and location. Additionally, this report measures the current state of charging infrastructure compared with the amount projected to meet charging demand by 2030. This information is intended to help transportation planners, policymakers, researchers, infrastructure developers, and others understand the rapidly changing landscape for EV charging.

Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: Second Quarter 2020 Brown, A.; Lommele, S.; Schayowitz, A.; Klotz, E. 1/1/2021 Reports

National Renewable Energy Laboratory, Golden, Colorado; ICF, Washington, D.C.

The U.S. Department of Energy’s Alternative Fueling Station Locator contains information on public and private non-residential alternative fueling stations in the United States and Canada and currently tracks ethanol (E85), biodiesel, compressed natural gas, electric vehicle (EV) charging, hydrogen, liquefied natural gas, and propane stations. Of these fuels, EV charging continues to experience rapidly changing technology and growing infrastructure. This report provides a snapshot of the state of EV charging infrastructure in the United States in the second calendar quarter of 2020. Using data from the Station Locator, this report breaks down the growth of public and private charging infrastructure by charging level, network, and location. Additionally, this report measures the current state of charging infrastructure compared with the amount projected to meet charging demand by 2030. This information is intended to help transportation planners, policymakers, researchers, infrastructure developers, and others understand the rapidly changing landscape for EV charging.

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Fourth Report Eudy, L.; Post, M. 7/1/2015 Reports

National Renewable Energy Laboratory, Golden, Colorado

This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 12 advanced-design fuel cell buses and two hydrogen fueling stations. The ZEBA demonstration is the largest FCEB demonstration in the United States and involves five participating transit agencies. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. NREL has published three previous reports, in August 2011, July 2012, and May 2014, describing operation of these buses. New results in this report provide an update covering data from November 2013 through December 2014.

American Fuel Cell Bus Project Evaluation: Third Report Eudy, L.; Post, M.; Jeffers, M. 5/22/2017 Reports

National Renewable Energy Laboratory, Golden, Colorado

This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB, which was developed as part of the Federal Transit Administration's (FTA) National Fuel Cell Bus Program, was delivered to SunLine in November 2011 and was put in revenue service in mid-December 2011. Two new AFCBs with an upgraded design were delivered in June/July of 2014 and a third new AFCB was delivered in February 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory to evaluate the buses in revenue service. This report covers the performance of the AFCBs from July 2015 through December 2016.

Model Year 2020 Fuel Economy Guide: EPA Fuel Economy Estimates 12/19/2018 Reports

U. S. Department of Energy, Washington, D.C.; U.S. Environmental Protection Agency, Washington, D.C.

The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

Model Year 2019 Fuel Economy Guide: EPA Fuel Economy Estimates 12/19/2018 Reports

U. S. Department of Energy, Washington, D.C.; U.S. Environmental Protection Agency, Washington, D.C.

The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

Hydrogen Production Roadmap: Technology Pathways to the Future 1/1/2009 Reports

FreedomCAR & Fuel Partnership, Hydrogen Production Technical Team, U.S. Department of Energy, Washington, D.C.

This Hydrogen Production roadmap was constructed by the Hydrogen Production Technical Team (HPTT) of the FreedomCAR and Fuel Partnership to identify the key challenges and priority research and development (R&D) needs associated with various hydrogen fuel production technologies.</p><p> The goal of the roadmap is to facilitate development of commercial hydrogen production via various technology pathways in the near and long term. DOE?s current hydrogen cost targets are $3.00 per gallon of gasoline equivalent3 (gge) at fueling stations and $2.00 per gge at a central facility (also known as the ?plant? gate).

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Third Report Eudy, L.; Post, M. 5/1/2014 Reports

National Renewable Energy Laboratory, Golden, Colorado

This report presents results of a demonstration of 12 fuel cell electric buses (FCEB) operating in Oakland, California. The 12 FCEBs operate as a part of the Zero Emission Bay Area (ZEBA) Demonstration, which also includes two new hydrogen fueling stations. This effort is the largest FCEB demonstration in the United States and involves five participating transit agencies. The ZEBA partners arecollaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. NREL has published two previous reports, in August 2011 and July 2012, describing operation of these buses. New results in this report provide an update covering eight months through October 2013.

The Business Case for Fuel Cells: Delivering Sustainable Value Curtin, S.; Gangi, J. 4/25/2017 Reports

Fuel Cell and Hydrogen Energy Association, Walshington, D.C.

The report provides an overview of recent private sector fuel cell installations at U.S. businesses as of December 31, 2016.

Clean Cities 2015 Annual Metrics Report Johnson, C.; Singer, M. 12/28/2016 Reports

National Renewable Energy Laboratory, Golden, Colorado

The U.S. Department of Energy's (DOE's) Clean Cities program advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use and greenhouse gas (GHG) emissions in transportation. A national network of nearly 100 Clean Cities coalitions, whose territory covers 80% of the U.S. population, brings together stakeholders in the public and private sectors to deploy alternative and renewable fuels, idle-reduction (IR) measures, fuel economy improvements, and new transportation technologies as they emerge. Each year, DOE asks Clean Cities coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Progress reports and information are submitted online as a function of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators report a range of information that characterizes the membership, funding, projects, and activities of their coalitions. They also document activities in their region related to the development of refueling/charging infrastructure, sales of alternative fuels; deployment of alternative fuel vehicles (AFVs), plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); idle reduction initiatives; fuel economy improvement activities; and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use and GHG emission reduction impacts, which are summarized in this report.

Model Year 2017: Alternative Fuel and Advanced Technology Vehicles 4/18/2017 Toolkits & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

The fact sheet details the model, vehicle type, emission class, transmission type/speeds, engine size, and fuel economy of a variety of flexible fuel vehicles, hybrid electric vehicles, all-electric, and extended range electric vehicles, as well as CNG and propane vehicles.

Massachusetts Fuel Cell Bus Project: Demonstrating a Total Transit Solution for Fuel Cell Electric Buses in Boston Eudy, L. 5/22/2017 Toolkits & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

The Federal Transit Administration's National Fuel Cell Bus Program focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solution for fuel cell electric buses that includes one bus and an on-site hydrogen generation station for the Massachusetts Bay Transportation Authority (MBTA). A team consisting of ElDorado National, BAE Systems, and Ballard Power Systems built the fuel cell electric bus, and Nuvera is providing its PowerTap on-site hydrogen generator to provide fuel for the bus.

SunLine Transit Agency Hydrogen-Powered Transit Buses: Third Evaluation Report Chandler, K.; Eudy, L. 6/1/2008 Reports

Battelle, Columbus, Ohio; National Renewable Energy Laboratory, Golden, Colorado

This report describes evaluation of operations at SunLine Transit Agency for a prototype fuel cell bus; a prototype hydrogen hybrid internal combustion engine bus; and five new compressed natural gas buses. This is the third evaluation report for SunLine Transit Agency in Thousand Palms, California. This report provides an update to the previous reports (Feb 2007 & Sep 2007) and includes results and experience through March 2008. During the data collection period (Jan 2006 - Mar 2008), SunLine operated the fuel cell bus nearly 51,000 miles in service with an overall fuel economy of 7.19 miles per kg. For comparison, SunLine's CNG buses have an average fuel economy of 3.02 miles per gasoline gallon equivalent. During the same timeframe, the HHICE bus accumulated more than 43,000 miles with an average fuel economy of 4.34 miles per kg.

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2018 Eudy, L.; Post, M. 12/31/2018 Reports

National Renewable Energy Laboratory, Golden, Colorado

This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory. This annual status report combines results from all FCEB demonstrations, tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. The data from these early FCEB deployments funded by the U.S. Department of Transportation, state agencies, and the private sector help to guide future early-stage research and development. The 2018 summary results primarily focus on the most recent year from August 2017 through July 2018.

Economy and Emissions Impacts from Solazyme Fuel in UPS Delivery Vehicles Kelly, K.; Ragatz, A. 8/10/2018 Reports

National Renewable Energy Laboratory

To improve understanding of the potential fuel economy and emissions impacts from switching a fleet of vehicles from conventional petroleum diesel to synthetic renewable diesel, the National Renewable Energy Laboratory (NREL) conducted fuel economy and emissions analyses at NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory. Representative test cycles were developed based on real-world data from six package delivery vehicles and six class 8 day-cab tractors operated by UPS in the Dallas, Texas, area. A three-week in-field data collection period yielded 170 days of real-world vehicle operations data that NREL used to select representative standard drive cycles for testing. Fuel economy and emissions tests at the ReFUEL Laboratory showed that, in general, when switching from conventional diesel to renewable diesel observed changes in tailpipe carbon dioxide (CO2), fuel consumption, and fuel economy are primarily driven by changes in fuel properties such as the hydrogen-to-carbon ratio, density, and lower heating value (LHV). The vehicles tested with the renewable diesel showed a consistent 4.2% reduction in tailpipe CO2 emissions, but a 3.5%-4.8% reduction in fuel economy compared with local pump diesel. This is consistent with the 4.2% lower volumetric LHV of the sourced renewable diesel compared to the pump diesel. The UPS package car tested on renewable diesel also demonstrated a 4.1% oxides of nitrogen (NOx) reduction. NOx emissions from the UPS selective-catalyst-reduction-equipped tractor were an order of magnitude lower than the package car but showed relatively higher variability in results from cycle to cycle.

Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis Final Report Melendez, M.; Milbrandt, A. 10/1/2006 Reports

National Renewable Energy Lab, Golden, Colorado

In fiscal 2004 and 2005, the National Renewable Energy Lab developed a proposed minimal infrastructure to support nationwide deployment of hydrogen vehicles by offering infrastructure scenarios that facilitated interstate travel. The current (FY06) project aims to identify key metropolitan areas and regions on which to focus infrastruce efforts during the early hydrogen transition. The objectives of this analysis are to (1) quantify projected hydrogen vehicle demand across the U.S. and in targeted metropolitan areas; and, (2) quantify the projected hydrogen fuel demands corresponding with different levels of hydrogen vehicle demand to inform infrastructure analyses such as siting hydrogen fueling stations and selecting between centralized and distributed hydrogen production.

Clean Cities 2014 Annual Metrics Report Johnson, C.; Singer, M. 12/22/2015 Reports

National Renewable Energy Laboratory, Golden, Colorado

Each year, the U.S. Department of Energy asks its Clean Cities program coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction (IR) initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this 2014 Annual Metrics Report.

American Fuel Cell Bus Project Evaluation: Second Report Eudy, L.; Post, M. 9/14/2015 Reports

National Renewable Energy Laboratory, Golden, Colorado

This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Administration's (FTA's) National Fuel Cell Bus Program. Through the non-profit consortia CALSTART, a team led by SunLine Transit Agency and BAE Systems developed a new fuel cell electric bus for demonstration. SunLine added two more AFCBs to its fleet in 2014 and another in 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory to evaluate the buses in revenue service. This report summarizes the performance results for all four buses through June 2015.

Model Year 2016: Alternative Fuel and Advanced Technology Vehicles 10/21/2015 Toolkits & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

The fact sheet details the model, vehicle type, emission class, transmission type/speeds, engine size, and fuel economy of a variety of flexible fuel vehicles, hybrid electric vehicles, all-electric, and extended range electric vehicles, as well as CNG and propane vehicles.

Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-Fueled Transportation System Melendez, M.; Theis, K.; Johnson, C. 8/1/2007 Reports

National Renewable Energy Laboratory, Golden, Colorado; National Renewable Energy Laboratory, Golden, Colorado; National Renewable Energy Laboratory, Golden, Colorado

DOE's Office of Energy Efficiency and Renewable Energy sponsored a two-phased study of 1) the success/failure of alternative-fuel vehicle programs and corresponding legislative policies, and 2)how well alternative fuels and vehicles met customer requirements and achieved economic viability. This study was undertaken in order to assess the role of government policy and its stability as it affects industry and consumer behaviors; optimize strategies related to the introduction of hydrogen in the end-user sector; and avoid repeating mistakes of previous transportation technology introduction programs.

Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology 10/1/2007 Toolkits & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

Hydrogen-powered fuel cell vehicles could play a central role in future transportation system. They produce only electricity, heat, and water at point of use. They could also use predominantly domestic--potentially renewable--energy supplies instead of imported oil for transportation.</p><p>Through a 2003 competitive solicitation, DOE selected four automobile manufacturer/energy company teams to participate in the project--Chevron/Hyundai-Kia, DaimlerChrysler/BP, Ford/BP, and GM/Shell. DOE is cost-share fundung those teams to build small fleets of fuel-cell vehicles plus fueling stations to demonstrate their use in five regions of the United States.

Well-to-Wheels Analysis of Fast Pyrolysis Pathways with GREET Han, J.; Elgowainy, A.; Palou-Rivera, I.; Dunn, J.B.; Wang, M.Q. 11/1/2011 Reports

Argonne National Laboratory

The pyrolysis of biomass can help produce liquid transportation fuels with properties similar to those of petroleum gasoline and diesel fuel. Argonne National Laboratory conducted a life-cycle (i.e., well-to-wheels [WTW]) analysis of various pyrolysis pathways by expanding and employing the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The WTW energy use and greenhouse gas (GHG) emissions from the pyrolysis pathways were compared with those from the baseline petroleum gasoline and diesel pathways. Various pyrolysis pathway scenarios with a wide variety of possible hydrogen sources, liquid fuel yields, and co-product application and treatment methods were considered. At one extreme, when hydrogen is produced from natural gas and when bio-char is used for process energy needs, the pyrolysis-based liquid fuel yield is high (32% of the dry mass of biomass input). The reductions in WTW fossil energy use and GHG emissions relative to those that occur when baseline petroleum fuels are used, however, is modest, at 50% and 51%, respectively, on a per unit of fuel energy basis. At the other extreme, when hydrogen is produced internally via reforming of pyrolysis oil and when bio-char is sequestered in soil applications, the pyrolysis-based liquid fuel yield is low (15% of the dry mass of biomass input), but the reductions in WTW fossil energy use and GHG emissions are large, at 79% and 96%, respectively, relative to those that occur when baseline petroleum fuels are used. The petroleum energy use in all scenarios was restricted to biomass collection and transportation activities, which resulted in a reduction in WTW petroleum energy use of 92-95% relative to that found when baseline petroleum fuels are used. Internal hydrogen production (i.e., via reforming of pyrolysis oil) significantly reduces fossil fuel use and GHG emissions because the hydrogen from fuel gas or pyrolysis oil (renewable sources) displaces that from fossil fuel na

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2017 Eudy, L.; Post, M. 11/21/2017 Reports

National Renewable Energy Laboratory, Golden, Colorado

This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. This annual status report combines results from all FCEB demonstrations, tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. These data and analyses help provide needed information to guide future early-stage research and development. The 2017 summary results primarily focus on the most recent year for each demonstration, from August 2016 through July 2017. The primary results presented in the report are from five demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus (AFCB) Project at SunLine Transit Agency in California; AFCB Project at the University of California at Irvine; AFCB Project at Orange County Transportation Authority; and AFCB Project at Massachusetts Bay Transportation Authority.

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: Second Results Report Eudy, L.; Chandler, K. 7/1/2012 Reports

National Renewable Energy Laboratory, Golden, Colorado; Batelle, Columbus, Ohio

This report presents results of a demonstration of 12 new fuel cell electric buses (FCEB) operating in Oakland, California. The 12 FCEBs operate as a part of the Zero Emission Bay Area (ZEBA) Demonstration, which also includes two new hydrogen fueling stations. This effort is the largest FCEB demonstration in the United States and involves five participating transit agencies. The ZEBA partnersare collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. The first results report was published in August 2011, describing operation of these new FCEBs from September 2010 through May 2011. New results in this report provide an update through April 2012.

Model Year 2015: Alternative Fuel and Advanced Technology Vehicles 10/30/2014 Toolkits & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

The fact sheet details the model, vehicle type, emission class, transmission type/speeds, engine size, and fuel economy of a variety of flexible fuel vehicles, hybrid electric vehicles, all-electric, and extended range electric vehicles, as well as CNG and propane vehicles.

Clean Cities 2013 Annual Metrics Report Johnson, C.; Singer, M. 10/20/2014 Reports

National Renewable Energy Laboratory, Golden, Colorado

Each year, the U.S. Department of Energy asks its Clean Cities program coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction (IR) initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this 2013 Annual Metrics Report.

Alternative Transportation Refueling Infrastructure in the United States 2014: Status and Challenges Greene, D.L. 1/13/2015 Reports

University of Tennessee, Howard H. Baker JHr. Center for Public Policy, Knoxville, Tennessee

Lack of adequate refueling infrastructure is a major barrier to the success of alternative motor fuels. A transition from fossil petroleum to alternative, low-carbon transportation fuels appears to be necessary to mitigate the adverse impacts of global warming, strengthen energy security and meet air quality standards. Finding effective combinations of business models and public policies to accomplish a transition to alternative fuels poses a new and difficult challenge. Focusing on highway vehicles, this paper reviews the motivation for transition to alternative fuels, the current status of alternative fuel refueling infrastructure in the U.S., the costs of such infrastructure and business models and policies that have been proposed to achieve a successful transition. The goal of this paper is to serve as a basis for innovative thinking and discussion rather than as a comprehensive analysis of the issue. Infrastructure for producing and delivering fuels to refueling stations is equally important but is outside the scope of this paper.

Alternative Fuel Vehicles & Fueling Infrastructure Deployment Barriers & the Potential Role or Private Sector Financial Solutions Dougherty, S.; Nigro, N. 5/14/2014 Reports

Center for Climate and Energy Solutions, Arlington, Virginia; National Association of State Energy Officials, Arlington, Virginia

This paper examines how private financing can address the barriers to demand facing electric, natural gas, and hydrogen fuel cell vehicles and their related fueling infrastructure. Starting with a review of the state of the market, it covers significant barriers to market demand and barriers for private investors and concludes with a review of innovative finance options used in other sectors that could be applied to the alternative fuel vehicle market.

Geography of Existing and Potential Alternative Fuel Markets in the United States Johnson, C.; Hettinger, D. 11/3/2014 Reports

National Renewable Energy Laboratory, Golden, Colorado

When deploying alternative fuels, it is paramount to match the right fuel with the right location, in accordance with local market conditions. We used six market indicators to evaluate the existing and potential regional market health for each of the five most commonly deployed alternative fuels: electricity (used by plug-in electric vehicles), biodiesel (blends of B20 and higher), E85 ethanol, compressed natural gas (CNG), and propane. Each market indicator was mapped, combined, and evaluated by industry experts. This process revealed the weight the market indicators should be given, with the proximity of fueling stations being the most important indicator, followed by alternative fuel vehicle density, gasoline prices, state incentives, nearby resources, and finally, environmental benefit. Though markets vary among states, no state received 'weak' potential for all five fuels, indicating that all states have an opportunity to use at least one alternative fuel. California, Illinois, Indiana, Pennsylvania, and Washington appear to have the best potential markets for alternative fuels in general, with each sporting strong markets for four of the fuels. Wyoming showed the least potential, with weak markets for all alternative fuels except for CNG, for which it has a patchy market. Of all the fuels, CNG is promising in the greatest number of states--largely because freight traffic provides potential demand for many far-reaching corridor markets and because the sources of CNG are so widespread geographically.

Clean Cities 2016 Vehicle Buyer's Guide 2/3/2016 Toolkits & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

Drivers and fleets are increasingly turning to the hundreds of light-duty, alternative fuel, and advanced technology vehicle models that reduce petroleum use, save on fuel costs, and cut emissions. This guide provides a comprehensive list of the 2016 light-duty models that use alternative fuels or advanced fuel-saving technologies.

Using Natural Gas for Vehicles: Comparing Three Technologies 1/4/2016 Toolkits & Fact Sheets

U.S. Department of Energy, Energy Efficiency & Renewable Energy, Washington, D.C.

In the United States, natural gas as a fuel is typically used for medium- or heavy-duty vehicles in centrally-fueled fleets. It has been proposed for greater use as a fuel for light-duty vehicles (LDVs). This can mean burning natural gas in an internal combustion engine like those used in most gasoline- and diesel-powered vehicles on the road today. However, natural gas can also serve as the energy source for plug-in electric or hydrogen fuel cell electric vehicles. This fact sheet compares some efficiency and environmental metrics for three possible options for using natural gas in LDVs.

Motor Fuel Excise Taxes 9/1/2015 Toolkits & Fact Sheets

National Renewable Energy Laboratory, Golden Colorado

A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.

SunLine Transit Agency Hydrogen-Powered Transit Buses: Preliminary Evaluation Results Chandler, K.; Eudy, L. 2/1/2007 Reports

Battelle Corporation, Cleveland, Ohio; National Renewable Energy Laboratory, Golden, Colorado

This preliminary report covers NREL's evaluation of hydrogen and fuel cell buses in service at SunLine Transit Agency in Thousand Palms, California. The report includes 11 months of performance data on two hydrogen-fueled buses: one fuel cell bus and one hybrid hydrogen-fueled internal combustion engine bus. The report also outlines the overall experience of the transit agency and its project partners in demonstrating these buses.

Hydrogen Demand, Production, and Cost by Region to 2050 Singh, M.; Moore, J.; Shadis, W. 8/3/2005 Reports

Center for Transportation Research, Argonne National Laboratory, Argonne, Illinois; TA Engineering, Inc., Baltimore, Maryland; TA Engineering, Inc., Baltimore, Maryland

This report presents an analysis of potential hydrogen demand, production, and cost by region to the year 2050. This analysis was conducted to (1) address the Energy Information Administration's request for regional hydrogen cost estimates that will be input to its energy modeling system; and (2) identify key regional issues associated with the use of hydrogen that needed further study. Hydrogen costs may vary substantially by region; however, to date, efforts to comprehensively and consistently estimate future hydrogen costs have not been assessed on a regional basis.

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016 Eudy, L.; Post, M.; Jeffers, M. 12/1/2016 Reports

National Renewable Energy Laboratory, Golden, Colorado

This report, published annually, summarizes the progress of fuel cell electric bus development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. Funding for this effort is provided by the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy and by the U.S. Department of Transportation's Federal Transit Administration. The 2016 summary results primarily focus on the most recent year for each demonstration, from August 2015 through July 2016. The results for these buses account for more than 550,000 miles traveled and 59,500 hours of fuel cell power system operation. The primary results presented in the report are from three demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus Project at SunLine Transit Agency in California; and American Fuel Cell Bus Project at the University of California at Irvine.

National Fuel Cell Electric Vehicle Learning Demonstration Final Report Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G. 7/1/2012 Reports

National Renewable Energy Laboratory

This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy's (DOE's) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. This report serves as one of many mechanisms to help transfer knowledge and lessons learned within various parts of DOE's Fuel Cell Technologies Program, as well as externally to other stakeholders. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

Examining Hydrogen Transitions Plotkin, S. 2/1/2007 Reports

Argonne National Laboratory, Argonne, Illinois

This report describes the results of efforts to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light-duty vehicles.